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Введение

В разных странах применяют различные техноло-
гии обращения с отработавшим ядерным топливом 
(ОЯТ) и радиоактивными отходами (РАО). В настоя-
щее время в мире реализуются как переработка ОЯТ 
и РАО, так и глубинное захоронение, а также принято 
большое количество так называемых отложенных ре-
шений, подразумевающих временное размещение ОЯТ 
и РАО до принятия решений о переработке или захо-
ронении [1]. Прорабатываются различные проекты об-
ращения с ОЯТ и РАО, в которых главную роль играет 
обоснование безопасности. Одним из практических 
инструментов, позволяющих обоснованно доказывать 
корректность проектных решений объектов использо-
вания атомной энергии, являются инструменты мате-
матического моделирования физических процессов.

Цель исследований — оценка влияния воздействия 
окружающей среды на параметры воздуха в зоне раз-
мещения ТУК с ОЯТ в отдельном здании — хранили-
ще сухого типа ХОЯТ со схемой отведения избытков 
теплоты от ТУК методом аэрации (схемой вентиляции 
с естественным побуждением).

Требования о таком проектном решении устанав-
ливается техническим заданием на разработку проекта 
АЭС зарубежными заказчиками. Схема естественного 
побуждения определена в соответствии с концепцией 
использования двухцелевого ТУК (транспортирование 
и хранение) с установленной для него 3-й категори-
ей размещения согласно ГОСТ 15150—69 «Машины, 
приборы и другие технические изделия».

Оценка теплового баланса воздуха в здании ХОЯТ 
позволяет определить пределы и условия безопасной 
эксплуатации ТУК в ХОЯТ в соответствии с требова-
ниями НП-001-15 и НП-061-05 в части обеспечения 
температуры оболочки тепловыделяющих элементов 
не более 350 оС. Косвенным критерием безопасности 
при обосновании проектных решений может служить 
температура внешней поверхности ТУК. 

На тепловой баланс воздуха в ХОЯТ влияют следу-
ющие факторы:

● объемно-планировочные, конструктивные, архи-
тектурные и инженерные решения (геометрия здания, 
его ориентация по сторонам солнечного света, кон-
струкции фасадов, приемных и выбросных устройств 
воздуха систем вентиляции и др.);

● величина тепловыделения от ТУК;
● влияние солнечной радиации (инсоляции);
● ветровые воздействия.
Для оценки влияния указанных факторов в про-

граммном обеспечении Star-CCM+ разработана рас-
четная CFD-модель ХОЯТ, позволившая не только 
получить расчетные физические зависимости, харак-
теризующие обозначенные факторы, но также устано-
вить и устранить проектные недостатки здания ХОЯТ, 
избежать необходимости натурных экспериментов, 
не допустить проектных ошибок на этапе реализации 
проекта ХОЯТ и конструировании ТУК.

Методология разработки расчетной модели

Разработка модели состояла из трех этапов. Не-
обходимость такого подхода обусловлена стадиями 
определения исходных данных, необходимых как для 
проектирования здания, так и конструирования обо-
рудования. Для проектировщика при создании ХОЯТ 
требуется информация о параметрах окружающей 
среды: температуре и влажности воздуха, скорости и 
розе ветров и некоторых других данных, являющихся 
граничными условиями для расчетов, а также ориен-
тировочных сведениях эксплуатируемого в нем обору-
дования (габаритах, тепловыделении). В свою очередь, 
конструктору ТУК для конструирования оборудования 
нужны параметры воздуха в ХОЯТ. Таким образом, 
задача обоснования безопасной эксплуатации ТУК в 
ХОЯТ становится итерационной, где проектировщик 
в начальной итерации устанавливает исходные техни- 
ческие требования к оборудованию (ИТТ), включаю-
щие в себя параметры воздуха в области размещения 
ТУК, а в следующей итерации конструктор ТУК, по ре-
зультатам разработки конструкторской документации 
на основании ИТТ, предоставляет проектировщику 
конструкторские данные для уточнения проекта ХОЯТ 
и создания рабочей документации для строительства.

Этап 1.
На первом этапе разработана грубая расчетная 

CFD-модель и в первом приближении определены: 
● зависимости расхода воздуха через проемы зда-

ния при заданной температуре окружающей среды;
● распределения температуры и давления; 
● линии тока потока воздуха. 
Выполненные гидродинамические расчеты уста-

новили характер течений потока воздуха, застойные 
зоны, градиент температуры воздуха по высоте здания. 
ТУК моделировали объемным источником, ограничен-
ным цилиндрической областью высотой 5 м и диамет-
ром 2.5 м. Внешнее обтекание здания на этом этапе не 
моделировалось. Количество ТУК — 60 шт.

Этап 2.
На втором этапе модель первого этапа была допол-

нена внешней расчетной областью для оценки внеш-
него течения (приток-отток воздуха), уточнены физи-
ческая модель и расчетная сетка. Габариты источника 
тепла изменены: высота цилиндрической области уве-
личена до 6,2 м. Данное изменение включено в модель 
ввиду появления актуализированных исходных дан-
ных для проектирования от конструктора ТУК. Модель 
воздуха (азотно-кислородная смесь) дополнена водя-
ным паром для учета влажности воздуха. Количество  
ТУК — 60 шт.

Этап 3.
На третьем этапе были дополнительно смодели-

рованы козырьки на внешней части контурных стен 
здания и перекрытиях. Для учета процессов тепло-
проводности в стенах здания внешние и внутренние 
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границы стен заменены расчетной областью твердого 
тела со свойствами бетона, также добавлен отдельный 
слой тепловой изоляции на кровле здания. Модель 
ТУК второго этапа заменена тепловым эквивален-
том ТУК, представляющим собой толстостенный ци-
линдр с толщиной стенки — 110 мм, внешним диамет- 
ром —  2,5 м и высотой — 4 м, заменяющим централь-
ную часть ТУК — область оребрения. Тепло распре-
делено в объеме теплового эквивалента. У остальных 
элементов ТУК (нижняя и верхняя части — область 
крышки) физические свойства отсутствуют. Такие эле-
менты (основание ТУК, крышка и др.) имеют гранич-
ные условия непроницаемой преграды и в теплообме-
не не участвуют.

Таким образом, результирующая модель третьего 
этапа состоит из пяти расчетных областей: окружаю-
щей среды, тепловой изоляции, стен, внутренней рас-
четной области, теплового эквивалента. Количество 
ТУК уменьшено с 60 до 40 шт.

Построение расчетной модели

На первом этапе построена трехмерная модель вну-
тренней области ХОЯТ с размещенными в ней ТУК, 
включая проемы в наружных стенах и кровле (рис. 1). 
Здание разделено на зоны размещения ТУК и транс-
портного коридора. Зона размещения ТУК состоит из 
двух отсеков, отделенных друг от друга стеной, пред-
назначенной для размещения опор крановых путей.

В зоне размещения ТУК внутренний воздух нагре-
вается от поступлений теплоты с поверхности ТУК за 
счет остаточного тепловыделения размещенных в них 
отработавших тепловыделяющих сборок (ОТВС). По 
мере роста температуры нагретые слои воздуха под-
нимаются вверх. Вместе с этим происходят диффузия 
нагретых воздушных масс и потеря напора.

В целях недопущения затекания воздушной удар-
ной волны (ВУВ) в здание ХОЯТ в проемах здания 
предусмотрены специальные устройства перекрытия 
вентиляционных каналов (УПВК). При воздействии 
ВУВ определённой интенсивности УПВК закрываются 
и не допускают затекание ВУВ внутрь здания. УПВК 
требует регулярного обслуживания, при необходимо-

сти соответствующего ремонта и имеют аэродинами-
ческие сопротивления, подлежащие учету в расчетах 
(коэффициент аэродинамического сопротивления 
УПВК Сx ≈ 4...6).

Для рассматриваемой задачи с учетом рекоменда-
ций [2], а также опыта других исследователей [3 — 5],  
использованы осредненные по Рейнольдсу опреде-
ляющие уравнения движения (RANS-модель) с k-ε-
моделью турбулентности. Для расчетов тепловой 
конвекции рассмотрены два метода моделирования: с 
использованием приближения Буссинеска–Обербека, 
предполагающего неизменность свойств воздуха, взя-
тых для неизменной температуры и с учетом измене-
ния свойств воздуха от температуры. Выявленные в 
ходе анализа модели Буссинеска–Обербека погрешно-
сти оказались незначительными (менее 3%), однако с 
учетом аналитических исследований [6] и некоторого 
влияния на скорость расчета в дальнейших этапах мо-
делирования использован второй метод.

Для построения расчетной сетки взят встроенный 
генератор расчетных сеток StarCCM+. Базовый раз-
мер ячейки определен на основании анализа сеточной 
погрешности. Итоговый базовый размер ячейки всех 
этапов выставлен с учетом сеточной погрешности не 
более 5%. Сеточную сходимость оценивали путем 
уменьшения базового размера ячейки. В ходе оценки 
сеточной погрешности выполнены расчеты с исполь-
зованием расчетной сетки размером от 1 до 15 млн яче-
ек для модели первого и второго, для модели третьего 
этапа — от 7 до 30 млн ячеек.

На рисунке 2 изображен разрез здания с элемен-
тами расчетной сетки расчетных моделей трех этапов 
(сверху вниз).

Сравнительный анализ сеток, разработанных на 
трех этапах, представлен в табл. 1.

Для оценки корректности граничных условий мо-
делировали как прямую, так и обратную постановки 
задачи. Для воссоздания реальных условий в качестве 
граничных условий прямой постановки задачи на про-
емах задавали условие избыточного давления, равного 
0 Па (отсутствие превышения давления над атмосфер-
ным), а для проверки, в качестве обратной постанов- 

Рис. 1. Трехмерная модель геометрии здания ХОЯТ (первый этап)
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ки, — полученные в прямой постановке значения рас-
хода воздуха в проемах. Погрешность прямой и обрат-
ной задач — незначительна (менее 1%).

В соответствии с [2], для моделирования сопротив-
лений проемов, возникающих из-за установки решеток 
фасадов и иного оборудования, и материалов, создаю-
щих аэродинамические сопротивления, использована 
модель пористой среды.

Результаты выполненных расчетов

Исходные данные расчетов по моделям  
первого и второго этапов

Атмосферное давление, Па��������������������������������������������� 101325
Температура окружающего воздуха, оС������������������������������ 50,4
Тепловыделение от одного контейнера, кВт���������������������� 21,6
Количество контейнеров, шт.�������������������������������������������������� 60
Суммарное тепловыделение, кВт��������������������������������������� 1296
Аэродинамические сопротивления проемов��������������������������� 6

Результаты инженерного анализа с помощью рас-
четной модели первого этапа представлены ниже.  
В таблице 2 приведены средние расходы и направле-
ния поступающего/уходящего воздуха через проемы 
ХОЯТ. Расположение стен указано на рис. 1.

На рисунках 3 — 6 даны распределения температу-
ры, линий тока воздуха и давления.

Разработка инженерной модели первого этапа по-
зволила оценить расход воздуха в проемах здания, по-
лучить распределения температур и давления в здании 
ХОЯТ, определить линии тока скорости движения воз-
духа в сжатые сроки для формирования исходных дан-
ных для конструкторов ТУК. 

Рис. 2. Расчетная сетка первого, второгои третьего этапов 
(сверху вниз)

Таблица 1

Сравнительный анализ расчетных сеток трех этапов

Первый этап Второй этап Третий этап

Сетка — 8,4 млн узлов с базо-
вым размером ячейки 0,2 м. 
Построена внутренняя рас-
чётная область. 
Для пристенных областей 
установлена двухслойная при-
зматическая модель с разме-
ром слоя 33% от базового раз-
мера ячейки.

Сетка — 4 млн узлов. 
Добавлена расчетная область окружающего ХОЯТ 
пространства в удалении на 15 м от стен с боковыми 
проемами и 20 м — от кровли. Базовый размер сетки, 
по сравнению с первым этапом, остался неизменным. 
Расчетная область стала больше, однако, благодаря 
сгущению/разрежению сетки (скорости роста), ито-
говый размер сетки был уменьшен. 
Для пристенных областей установлена двухслойная 
призматическая модель с размером слоя 33% от базо-
вого размера ячейки.

Сетка — 17 млн узлов. 
Базовый размер сетки увеличен до 0,25 
м. Для построения внешней расчетной 
сетки использован цилиндр диаметром 
500 м и высотой 300 м. Ось цилиндра 
установлена в геометрическом центре 
здания. Контейнер выделен в отдель-
ную расчетную область для возмож-
ности учета поправок точности моде-
лирования оребрения в последующих 
дополнительных обоснованиях.

Таблица 2

Средний расход воздуха по сечениям проемов здания

Характеристика
Наименование строительной конструкции (проемы)

Левая стена Правая стена Задняя стена Кровля
Расход, м3/ч +83163 +81675 +121194 –286031
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Результаты расчета с помощью модели, разработан-
ной на втором этапе, приведены в табл. 3.

Модель второго этапа не учитывала теплообмен 
окружающей среды со стенами и воздействие солнечной 
радиации. По результатам расчетов по модели второго 
этапа распределения температуры, давления и линии 
тока воздуха качественно не отличаются от распределе-
ний, полученных на первом этапе, однако модель второ-
го этапа не позволила оценить влияние солнечной инсо-
ляции на тепловой баланс воздуха здания ХОЯТ, а также 
корректно учесть влияние ветровой нагрузки. Для этого 
потребовалась разработка модели третьего этапа.

Исходные данные расчета по модели третьего этапа
Атмосферное давление, Па��������������������������������������������� 101325
Температура окружающего воздуха, оС������������ 32,9; 44,2; 50,4
Ветровая нагрузка, м/с
(направление ветра показано на рис. 7)�������������� 2,3; 27,3; 46,8
Тепловыделение от одного контейнера, кВт���������������������� 21,6
Количество контейнеров, шт.�������������������������������������������������� 40
Суммарное тепловыделение, кВт����������������������������������������� 864
Аэродинамические сопротивления проемов, Сx��������������������� 6

Ветровые воздействия, в частности 27,3 и 46,8 м/с, 
не были длительными. Приведенные значения преду-
смотрены проектными изысканиями для оценки проч-
ности фасадных систем и иных элементов внешних 
строительных конструкций, однако ввиду большой 
площади проемов они также использованы в расчетах 
теплового баланса здания ХОЯТ в качестве подтверж-
дения устойчивости расчетной модели.

На рисунке 7 продемонстрированы линии тока ско-
рости при внешнем обтекании здания ХОЯТ в горизон-
тальном разрезе на высоте 6 м.

Характерное сечение (фиолетовый цвет) для оцен-
ки распределения температуры, давления и линий тока 
скорости приведено на рис. 8 модели третьего этапа. 
Распределения линий тока и температуры изображены 
на рис. 9 — 12.

На рисунках 10 — 12 даны распределения темпе-
ратуры воздуха в характерном сечении при скорости 
окружающего ветра 2,3 м/с.

На рисунках 13, 14 представлены графики зависи-
мости температуры на отметке обслуживания 6 м и 

Рис. 3. Распределение температуры в продольных сечениях 
здания ХОЯТ (расчетная модель первого этапа)

Рис. 4. Распределение давления в продольных сечениях зда-
ниях ХОЯТ (расчетная модель первого этапа)

Рис. 5. Линии тока в продольных сечениях здания ХОЯТ (рас-
четная модель первого этапа)

Рис. 6. Линии тока в поперечных сечениях здания ХОЯТ (рас-
четная модель первого этапа)
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Таблица 3

Средний расход поступающего и выходящего из ХОЯТ воздуха

Характеристика
Наименование строительной конструкции (проемы)

Левая стена Правая стена Задняя стена Кровля
Расход, м3/ч +75933 +75933 +108078 –257685

Рис. 7. Линии тока (минимальная скорость — 0 м/с, максимальная — 3 м/с) при внешнем обтекании здания ХОЯТ в горизонталь-
ном разрезе на высоте 6 м модели третьего этапа

Рис. 8. Характерное сечение

Рис. 9. Распределение линий тока скорости (минимальная скорость — 0 м/с, максимальная — 3 м/с) в характерном сечении (мо-
дель третьего этапа)
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Рис. 10. Распределение температуры в здании ХОЯТ при температуре окружающего воздуха 32,9 оС в характерном сечении (мо-
дель третьего этапа)

Рис. 11. Распределение температуры в здании ХОЯТ при  температуре окружающего воздуха 44,2 оС в характерном сечении (мо-
дель третьего этапа)

Рис. 12. Распределение температуры в здании ХОЯТ при температуре окружающего воздуха 50,4 оС в характерном сечении (мо-
дель третьего этапа)
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Рис. 13. График зависимости температуры на отметке обслуживания ТУК 6 м от аэродинамических сопротивлений проемов рас-
четной модели третьего этапа. Суммарное тепловыделение от ТУК — 864 кВт, скорость ветра — 2,3 м/с, температура окружаю-
щего воздуха — 32,9 оС

Рис. 14. График расхода воздуха через проемы здания ХОЯТ в зависимости от аэродинамических сопротивле-
ний проемов расчетной модели третьего этапа. Аэродинамические сопротивления проемов — 6, скорость ветра —  
2,3 м/с, температура окружающего воздуха — 50,4 оС

расхода воздуха от аэродинамических сопротивлений 
проемов здания ХОЯТ при температуре окружающего 
воздуха 32,9 оС, количестве ТУК — 40 шт., с тепловы-
делением 21,6 кВт от одного ТУК.

Интересно сопоставить зависимости температу-
ры воздуха на отметке обслуживания ТУК 6 м, рас-
хода воздуха в проемах от тепловыделения ТУК 
для моделей трех этапов для исходных данных  
табл. 2. Указанные зависимости продемонстрированы  
на рис. 15, 16.

Выводы

Исходя из полученных зависимостей температу-
ры на отметке обслуживания 6 м и расхода воздуха в 
проемах здания от аэродинамического сопротивления  
(см. рис. 13), можно сделать вывод о том, что аэроди-
намические сопротивления проемов, обусловленные 
наличием оборудования (УПВК, фасадных решеток, 
элементов систем физической защиты) оказывают зна-
чительное влияние на расход поступающего и уходя-

щего воздуха. Изменение расхода в диапазоне значе-
ний сопротивления от 0 до 6 составило более 40%.

Анализ полученных зависимостей температуры на 
отметке обслуживания 6 м и расхода воздуха в про-
емах здания от тепловыделения от ТУК для моделей 
трех этапов (см. рис. 9) показал, что в модели первого 
этапа значение расхода воздуха не является максималь-
ным, при этом температура воздуха на отметке обслу-
живания 6 м максимальна среди моделей всех этапов.  
Очевидно, что модель первого этапа подходит только 
для грубой инженерной оценки зависимостей.

Зависимости модели второго и третьего этапов 
практически эквидистантны, что доказывает коррект-
ность и устойчивость расчетных моделей. Относитель-
ное отклонение значений в точках рассматриваемых 
зависимостей (см. рис. 15, 16) по температуре состави-
ла не более 5%, по расходу — не более 15%.

Для принятия проектных решений в части плана 
управления запроектными авариями ключевым яв-
ляется установление запаса времени для проведения 
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Рис. 15. Зависимость расхода воздуха через проемы от тепловыделения ТУК для расчетных моделей первого, второго и третьего 
этапов

Рис. 16. Зависимость температуры на отметке обслуживания 6 м от тепловыделения ТУК для расчетных моделей первого, второго 
и третьего этапов

снижающих тяжесть аварии мероприятий. Постулиру-
емым событием может стать завал здания грунтом. Раз-
работанная модель третьего этапа позволяет сделать 
расчеты в нестационарной постановке для оценки ди-
намики изменения температуры в ХОЯТ и ее влияния 
на критерии безопасности при эксплуатации ТУК в 
ХОЯТ в случае наступления постулируемого события.

Исчерпывающие результаты моделирования, в со-
ответствии с исходными данными расчета третьего 
этапа, касающиеся воздействий природного характера 
(ветровой и солнечной активностей), а также оценки 
допущений моделей, связанных с граничными усло-
виями источника тепла, являются предметом будущих 
исследований.
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