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Введение

Согласно прогнозам, современный рост мирового 
потребления энергии ведет к снижению запасов иско-
паемых топлив [1, 2] и, вместе с тем, увеличению ан-
тропогенного воздействия на климат [3]. В этой связи, 
международными усилиями проводится климатичес-

кая политика [4], направленная на развитие низко- 
углеродной экономики [5]. В рамках указанной клима-
тической повестки мировая энергетика претерпевает 
период структурных изменений спроса на энергоре-
сурсы, связанные с замещением использования иско-
паемых топлив альтернативными энергетическими ре-
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сурсами с низким уровнем выбросов парниковых газов 
[6, 7].

Для обеспечения устойчивого развития энергетики 
РФ энергетической стратегией Российской Федерации 
на период до 2035 г. [8] (далее – Стратегия) предусма-
тривается, в том числе, структурная диверсификация 
энергетики, в рамках которой углеродная энергети-
ка дополнится низкоуглеродной, а централизованное 
электроснабжение – децентрализованным. К техноло-
гиям, которые могут повлечь переход энергетики на 
новый технологический базис, относят, в частности,  
возобновляемые источники (ВИЭ) и накопители энер-
гии [9]. В этих условиях, согласно Стратегии, водород-
ным энергетическим технологиям отводится особенная 
роль, поскольку водород способен стать экологически 
нейтральным энергоносителем и инструментом, при-
менение которого будет способствовать ресурсосбере-
жению и низкоуглеродному развитию.

В концепции развития водородной энергетики в 
Российской Федерации [10], дополняющей и конкре-
тизирующей Стратегию в части развития водородной 
энергетики, отмечается, что основными преимущест-
вами водорода являются возможность его получения 
из различных источников, широкая область использо-
вания для транспорта, накопления, хранения, доставки 
и выработки энергии, а также отсутствие антропоген-
ного воздействия на окружающую среду при обраще-
нии в качестве энергоносителя. В числе технологий, 
удовлетворяющих целям развития низкоуглеродной 
экономики, помимо крупномасштабного производства 
водорода за счет энергии объектов централизованно-
го энергоснабжения, считается применение водорода, 
полученного методом электролиза воды с использова-
нием электроэнергии ВИЭ. Ожидается, что в долго-
срочной перспективе до 2050 г. стоимость водорода, 
произведенного с помощью ВИЭ, способна стать кон-
курентоспособной относительно стоимости низкоу-
глеродного водорода, добытого из ископаемых видов 
топлива. Таким образом, в настоящее время в качестве 
одного из приоритетных направлений рассматривает-

ся получение водорода на основе мощностей ВИЭ в 
тех регионах, где его себестоимость будет конкурен-
тоспособной по сравнению с традиционными энерго-
носителями. Более широкое использование ВИЭ с во-
дородным аккумулированием энергии поспособствует 
развитию изолированных регионов за счет повышения 
эффективности автономных систем электроснабжения 
и снижения зависимости от северного завоза.

Представлена разработка имитационной моде-
ли (ИМ) проекта автономного электроснабжения на 
базе фотоэлектрической (ФЭ) солнечной генерации 
в качестве основного источника энергии и гибридно-
го накопителя энергии, состоящего из литий-ионной 
аккумуляторной батареи (АБ) и водородного нако-
пителя энергии с хранением в виде сжатого газа (да- 
лее — микроэлектростанция). Для вторичной генерации 
электроэнергии внутри сети из запасенного водорода 
использован водородный топливный элемент (ТЭ). Про-
ектируемый объект рассмотрен применительно к авто-
номному электроснабжению, однако он предусматри-
вает возможность присоединения к сети для работы в 
режиме параллельного использования электроэнергии.

Архитектура проекта микроэлектростанции  
и система управления технологическим  
процессом

Объект управления — проект автономного электро-
снабжения, работа которого организована следующим 
образом (рис. 1, таблица):

● контроллер точки максимальной мощности 
(ТММ), встроенный в многофункциональный солнеч-
ный инвертор 2, осуществляет отбор максимальной 
мощности от солнечных панелей 1;

● инвертор 2 преобразует генерируемый постоян-
ный ток в перемененный ток шины подключения по-
требителей мощности (шина AC);

● избыточной электроэнергией от солнечной гене-
рации посредством контроллера заряда батареи, инте-
грированного с многофункциональным инвертором 2, 
заряжается АБ 3, обеспечивающая сглаживание не-

Рис. 1. Архитектура проектируемой автономной микроэлектростанции
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равномерностей генерации в краткосрочный интервал 
времени;

● когда АБ заряжена, электролизер 4 за счет оста-
точной солнечной генерации методом электролиза 
воды нарабатывает водород в ресивер 5, затем он ком-
примируется водородным компрессором 6 в газовые 
баллоны 7 для долгосрочного хранения запасенной 
энергии в виде сжатого газа;

● накопленный резерв используется ТЭ 8 для вто-
ричной выработки электроэнергии внутри системы.

Следует отметить, что топология проектируемой 
микроэлектростанции в части подключения электри-
ческого выхода ТЭ к шине с потребителями мощности, 
может быть различной (см. рис. 1), а именно — посто-
янный ток генерируемый ТЭ может быть подключен 
как к шине постоянного тока (DC-шине) через преоб-
разователь напряжения, так и к шине переменного тока  
(AC-шине) посредством стабилизатора напряжения для 
согласования частоты тока. Однако способ подключения 
ТЭ к шине с потребителями мощности не имеет прин-
ципиального значения для учета баланса мощности.

Постановка задачи управления

Влияние различных режимов работы энергоснаб-
жения с водородным аккумулированием энергии на 
баланс мощности и энергии является предметом тща-
тельного исследования [11 — 13]. При этом ИМ зам-
кнутой энергетической системы, включающая гибрид-
ное хранилище энергии, состоящее из литий-ионного 
аккумулятора и водородного накопителя, рассматрива-
лась лишь в одной схожей работе [14] с подобным под-

ходом, однако цели, задачи и состав технологического 
оборудования имеют существенные отличия от насто-
ящей работы. Главная цель настоящей работы — раз-
работка ИМ с целевой функцией управления, обеспе-
чивающей балансовую надежность электроснабжения. 
Предполагается, что созданная модель должна послу-
жить в качестве основы для дальнейшего развития, что 
по мере детализации модели, позволит расшить область 
ее применения. Наиболее актуальными видятся направ-
ления, сформулированные в следующих тезисах:

● проектирование состава и размеров технологи-
ческого оборудования, в том числе, автоматизирован-
ной системы управления технологическим процессом 
(АСУТП), необходимых для различных сценариев, ре-
жимов работы, погодных условий, климатических зон 
и графиков потребления энергии;

● анализ устойчивости электроснабжения, заклю-
чающийся в оценке способности системы энергообе-
спечения сохранять балансовую надежность как в ус-
ловиях прерывистого характера генерации от ВИЭ, так 
и при возмущениях мощности потребления энергии;

● оптимальное управление электроснабжением с це-
лью улучшения технико-экономических показателей;

● обоснование безопасности проектируемой мик-
роэлектростанции.

Концептуальная модель системы  
электроснабжения

Структура проекта модели.
В основе имитационного моделирования лежит ме-

тодология системного анализа, что позволяет приме-

Основные технические характеристики оборудования

Наименование Параметр Значение
Солнечная батарея Мощность, Вт 540

Многофункциональный солнечный инвертор
Мощность, кВт 8
Пиковая мощность (кратковременно), кВт 16

Литий-ионный аккумулятор Емкость, А⋅ч 200

Электролизер
Производительность по водороду, л/ч 0...500
Потребляемая мощность, ВА 2250
Выходное давление по водороду, ати до 5

Водородный компрессор

Производительность, нм3/ч 0...3
Давление входа избыточное, атм. 1
Давление выходное избыточное, атм. 200
Максимальная мощность, кВт 0,0...2,2

Ресивер Рабочее давление, атм. 0...5

Стандартный газовый баллон
Рабочее давление, атм. 0...200
Объем, л 50

Водородный топливный элемент

Номинальная мощность, Вт 1000
Номинальная производительность, В(А) 28,8(35)
Давление водорода на входе, атм. 0,45...0,55
Расход при максимальной мощности 13
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нять принципы системного подхода для исследования 
проектируемого автономного электроснабжения [15]. 
Проект модели предусматривает дальнейшее расши-
рение ее области применения и повышение степени 
детализации процессов, выбираемые с учетом целей 
управления, ограничений и исходных данных.

В настоящей работе на этапе разработки простой 
исходной модели под целевым управлением понима-
ется организация и координация подсистем таким об-
разом, чтобы гарантировать балансовую надежность 
энергоснабжения потребителя. Анализ баланса следу-
ет проводить с циклом не менее одного календарного 
года, поскольку генерация и потребление энергии за-
висят от сезонов, меняющихся по годовому циклу. При 
этом, изучаемый этап детализации не отражает не-
равномерности переходных режимов оборудования, а 
именно: динамику выхода на установившийся режим 
работы электролизера и ТЭ. Данный подход предпо-
лагает, что результирующий годовой баланс определя-
ется, в основном, установившимися режимами работы 
оборудования, переходы между которыми рассматри-
ваются как квазистационарные.

Потоки электрической мощности и газообразного 
водорода, определяющие балансировку мощности в 
системе, а также выделение подсистем объекта управ-
ления, отражены на структурной схеме рис. 2.

Использование гибридного накопителя повыша-
ет надежность и устойчивость электроснабжения, 
поскольку две используемые технологии аккумули-
рования энергии обладают взаимно дополняющими 
динамическими, мощностными и емкостными харак-
теристиками, что придает гибкость системе управле-
ния. Литий-ионная АБ имеет сравнительно небольшую 
емкость, подходящую для кратковременного действия, 
но при этом обладает быстрым откликом на резкие из-
менения генерации или потребления электроэнергии, 
например, в случае краткосрочного затенения солнеч-
ных панелей облаками или включения/отключения по-
требителей в сеть нагрузки. Водородному хранилищу 
вместе с ТЭ, напротив, присущи большая емкость и 
инерционность, поэтому ТЭ больше подходит для вы-
работки длительного действия. Следовательно, при 

отсутствии солнечной генерации дневной минимум 
целесообразно покрывать за счет ТЭ, а максимумы по-
требления вырабатывать с помощью АБ. Таким обра-
зом, проектируемая АСУТП должна обеспечивать на-
дежность электроснабжения.

4.2. Исходные данные.
В качестве репрезентативных исходных данных по 

интенсивности солнечного излучения и температуре 
взяты данные с усреднением по часу за 2021 г. по горо-
ду Москве [16], поскольку в этом регионе запланирова-
на реализация проекта опытной микроэлектростанции.

Типовой суточный график нагрузки имеет явно вы-
раженные характерные экстремумы и периоды: утрен-
ний и вечерний максимумы, зону снижения нагрузки 
днем и ночной провал нагрузки [17]. В качестве ис-
ходных данных (в первом приближении) использован 
упрощенный график суточной нагрузки (рис. 3). Ис-
ходя из геометрии усредненных суточных профилей 
солнечной и ветровой генерации, можно сделать вывод 
о том, что «П»-образный график задаваемой нагрузки 
целесообразно покрывать за счет солнечной, а базовую 
нагрузку графика нагрузки — за счет ветровой генера-
ции. Таким образом, в рамках настоящей работы, где 
солнечная генерация является единственным первич-
ным источником энергии, использован упрощенный 
вид графика нагрузки — «П»-образный, но без его ба-
зовой составляющей.

Программная реализация модели

Моделирование выполнено в Simulink с использо-
ванием библиотеки мультифизического моделирования 
Simscape, позволяющей проводить численные расчеты 
в сосредоточенных параметрах по принципиальной 
схеме на основе законов сохранения, дифференциаль-
ных и разностных уравнений. ИМ представляет собой 
расчетную схему с логико-математическим описанием, 
сформированную с помощью программного средства 
Simulink, где уставкой служит задаваемый график на-
грузки, покрываемый как путем прямого преобразова-
ния солнечной генерации, так и за счет накопителей 
внутри системы.

Рис. 2. Структурная идентификация объекта управления:
1 — фотоэлектрические панели; 2 — многофункциональный солнечный инвертор; 3 — АБ; 4 — электролизер; 5— ресивер; 6 — 
водородный компрессор; 7 — газовые баллоны; 8 — водородный ТЭ; 9 — электрическая нагрузка; NPV — мощность, генерируемая 
ФЭ блоками; NBAT — мощность заряда/разряда АБ; NEL — электрическая мощность, потребляемая электролизером; NHC — мощ-
ность компрессора; NFC — мощность, вырабатываемая ТЭ; NLOAD — мощность потребления
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Исходные данные модели — сведения о погоде и 
график нагрузки. Входными и выходными параметра-
ми подсистем выступает информация о технических 
характеристиках, указанных в паспортных данных на 
оборудование (см. таблицу). Через подсистемы прохо-
дят линия электрической мощности (постоянного тока/
среднего значения переменного тока), а также газовый 
канал, посредством которых происходит обмен пото-
ками энергии между подсистемами. Направления по-
токов мощности регулируются логическими и непре-
рывными сигналами управления. Подсистемы имеют 
диагностические выходы для измерения потребления 
и выработки электроэнергии, а также термодинамичес-
ких параметров состояния газа (рис. 4).

Simscape служит для моделирования части подси-
стем, а именно газовой водородной системы, АБ, а так-

же для эквивалентных электрических. Это позволяет, 
с одной стороны, улучшить адекватность балансовой 
модели, с другой — повышает эффективность ее раз-
работки.

Описание частных подсистем модели

Солнечная фотоэлектрическая установка.
В состав проектируемой солнечной установки вхо-

дят (см. рис. 1):  два ФЭ блока 1 по 4 кВт, состоящие из 
семи последовательно соединенных монокристалли-
ческих ФЭ солнечных модуля номинальной мощно-
стью 540 Вт; однофазный многофункциональный сол-
нечный инвертор 2 мощностью 8 кВт (кратковременно 
до 16 кВт) с двумя контроллерами точки максимальной 
мощности (ТММ) и встроенным зарядным устрой-
ством для АБ; АБ 3, состоящая из четырех последо-
вательно соединенных литий-ионных аккумуляторов с 
номинальным напряжением 12 В и емкостью 200 А∙ч.

Модель вольт-амперной характеристики (ВАХ) ФЭ 
блоков выполнена с помощью хорошо себя зареко-
мендовавшей модели, интегрированной в библиотеку 
Electrical Simscape [18, 19], полностью воспроизводя-
щей ВАХ паспортных данных на ФЭ солнечный модуль.

Модель регулирования контроллера ТММ не явля-
ется целью настоящей работы и не представляет ин-
тереса для исследования. Для моделирования взяты 
паспортные данные на солнечную панель, построена 
зависимость ТММ от интенсивности солнечного из-
лучения и температуры, а затем эти данные использо-
ваны в подсистеме, имитирующей работу контролле-
ра ТММ. Таким образом, входными параметрами для 
подсистемы, имитирующей ФЭ установку, выступают 
исходные данные о погоде (интенсивность солнечного 
излучения Ir и температура T), а выходным — макси-
мальная электрическая мощность, генерируемая сол-
нечными панелями in_N_PV (рис. 5).

Рис. 3. Декомпозиция структуры солнечно-ветровой когене-
рации для покрытия упрощенного графика нагрузки: 
1 — характерный профиль ФЭ генерации; 2 — характер-
ный усредненный профиль ветровой генерации; 3 — «П»-
образная часть графика нагрузки; 4 — базовая часть нагрузки

Рис. 4. Расчетная модель:
in_RES, in_load — исходные данные; PV — солнечные панели; Inverter (in)v — многофункциональный солнечный инвертор; 
Battery (bat) — АБ; Electolyzer (EL) — электролизер; Receiver (rec) — ресивер; Hydrogen Compressor (HG) — водородный компрес-
сор; Gas-Cylinders (cyl) — газовые баллоны; Fuel Cell (FC) — водородный ТЭ; Load — электрическая нагрузка; s — логическая 
переменная, boolean; N — электрическая мощность, ВА/Вт/кВт; Q — емкость, А⋅ч; RES — данные по температуре, °С и интенсив-
ности солнечного излучения, (Вт⋅ч/м2; h2 gas pipeline — газовая система с водородом; AC bus — шина переменного однофазного 
тока; in, out — входные и выходные параметры
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Аккумуляторная батарея.
Литий-ионные накопители в течение непродолжи-

тельного времени способны обеспечивать поглощение 
и отдачу достаточно высокой электрической мощности, 
при этом обладают саморазрядом и ограниченным сро-
ком службы. Литий-ионные аккумуляторы целесооб-
разно использовать для компенсации колебаний мощ-
ности в краткосрочный период, а также для срезания/
смещения пиков нагрузки в присутствие дополнитель-
ного внешнего (солнечной генерации) или внутреннего 
источника питания (вторичной генерации ТЭ).

Модель ВАХ литий-ионного аккумулятора выпол-
нена на основе известной эквивалентной электричес-
кой схемы, интегрированной в библиотеку Elecrical 
Simscape Simulink [20], благодаря которой была по-
строена зависимость динамики разряда от степени за-
ряженности батареи, соответствующая данным, ука-
занными в спецификации на аккумулятор.

Электрическая мощность разряда батареи на на-
грузку регулируется уставкой по требуемой нагрузке, 
для этого на основе законов Ома реализована экви-
валентная электрическая схема, имитирующая заряд 
аккумулятора в случае избытка генерации (рис. 6). Та-
ким образом, входным параметром подсистемы АБ вы-

ступает значение избыточной или недостаточной для 
покрытия спроса электрической мощности, а выход- 
ным — электрическая мощность разряда АБ на нагрузку.

Баланс мощности регулируется следующим образом 
(рис. 7): когда ФЭ генерации 1 недостаточно для по-
крытия нагрузки 3, остаточный спрос на энергию ком-
пенсируется посредством солнечного инвертора за счет 
электроэнергии, запасенной в АБ 2. Таким образом, пло-
щади под графиками 1 (покрытие части нагрузки за счет 
ФЭ панелей) и 2 (покрытие части нагрузки за счет АБ) 
в сумме дают потребление электроэнергии нагрузкой 3.

Электролизер.
Он необходим для преобразования методом элек-

тролиза воды излишков произведенной электроэнер-
гии от ВИЭ в химическую энергию, запасаемую в га-
зообразном водороде. Применение электролизеров на 
основе твердого полимерного электролита (ТПЭ) обу-
словлено рядом преимуществ, способствующих их ин-
теграции с возобновляемыми источниками энергии [21].

Построение подсистемы электролизера опирается 
на технические характеристики коммерческого элек-
тролизера с ТПЭ (см. таблицу), состоящего из электро-
химических ячеек, объединенных в стек. ИМ газовой 
системы с водородом и, в частности, газовая система 

Рис. 5. Подсистема Simulink PV, моделирующая ФЭ генерацию

Рис. 6. Электрическая эквивалентная схема, по которой осуществляется заряд АБ и регулируется мощность разряда АБ на на-
грузку:
N_BAT — мощность разряда, Вт; R_load — регулируемое сопротивление нагрузки, значение которого зависит от спроса на элек-
троэнергию, Ом; I_charge — регулируемый ток заряда в зависимости от значения избыточной энергии и уровня заряда АБ
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электролизной установки выполнены с использовани-
ем библиотеки Gas Simscape пакета Matlab Simulink 
(рис. 8), где были применены функциональные бло-
ки Gas Properties (G) [22] и Controlled Mass Flow Rate 
Source (G) [23], более подробное описание термодина-
мических процессов в которых дано в [21, 24].

На вход электролизера подаются сигналы управле-
ния и внутренние параметры, определяемые характе-
ристиками электролизера (см. рис. 8). Логический сиг-
нал управления s_rec по обратной связи оповещает о 
необходимости включения/отключения электролизера 
в зависимости от наполненности ресивера водородом. 
По непрерывному сигналу на вход подсистемы при-
ходит значение свободной электрической мощности в 

системе Nexc. Зависимость производительности водо-
рода G(H2)_EL, являющаяся выходным параметром 
подсистемы, от потребляемой мощности Nexc в уста-
новившемся режиме работы по паспортным данным 
имеет линейную зависимость.

Система хранения водорода.
Водородный накопитель предназначен для хране-

ния электрической энергии, произведенной за счет не-
используемой ФЭ генерации, с возможностью после-
дующего преобразования ее обратно в электроэнергию 
внутри системы в период низкой первичной генерации. 
Водород может храниться в газообразном, жидком и 
связанном состоянии в носителях и в форме химичес-
ких соединений.

Рис. 7. Регулирование баланса мощности 19 — 20 сентября 2021 г.:
1 — мощность, потребляемая нагрузкой за счет ФЭ генерации; 2 — мощность, потребляемая нагрузкой за счет АБ; 3 — график 
нагрузки; 4 — мощность, поглощаемая АБ при зарядке; 5 — мощность, потребляемая нагрузкой за счет выработки ТЭ

Рис. 8. Подсистема Sumulink Electolyzer (EL) электролизной установки:
Table Gh2_EL(N_EL) — табличные данные зависимости расхода генерируемого водорода в электролизере Gh2_EL от электричес-
кой мощности, подаваемой на электролизер N_EL
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К наиболее отработанному, доступному способу от-
носят хранение водорода в сжатом газе. Эта технология 
аналогична хранению природного газа, и ее примене-
ние целесообразно для проектируемой микроэлектро-
станции, исходя из масштабов потребления, стоимости 
и простоты реализации.

Моделируемая система водородного накопления энер-
гии состоит из трех основных элементов (см. рис. 4):  
Receiver (rec) — ресивера, обеспечивающего хране-
ние водорода при повышенных рабочих давлениях до  
5 атм; Hydrogen Compressor (HG) — водородного ком-
прессора; Gas-Cylinders (GC) — стандартных газовых 
баллонов для долгосрочного хранения компримиро-
ванного водорода под давлением до 200 атм.

Ресивер выступает резервуаром перед компрессо-
ром, в который из электролизера накапливается рабо-
чая среда (водород), для сокращения его циклов вклю-
чения/выключения и стабилизации подачи водорода в 
периоды пиковых мощностей.

Газообразный водород при нормальных условиях 
имеет низкую плотность, поэтому для долгосрочного 
хранения газ компримируют. Чем выше конечное дав-
ление газа, тем меньше общий объем резервуаров по-
надобится для его хранения.

С целью компримирования водорода выбран во-
дородный компрессор отечественного производ-
ства с минимальными характеристиками по произ-
водительности (см. таблицу). Выбор происходил с 
учетом того, что производительность компрессора 
будет регулироваться посредством частотного пре-
образователя. При неравномерной генерации от ВИЭ 
компрессор с частотным приводом обеспечивает вы-
сокую энергоэффективность за счет использования 
всей доступной избыточной электрической мощно-
сти, кроме этого повышаетcя надежность его рабо-

ты, обусловленная уменьшением количества циклов  
пуска/останова.

Моделирование водородного аккумулирования 
энергии выполнено с использованием газовых и тепло-
вых портов [25, 26], имитирующих накопление массы 
и энергии в газовой сети, а также теплообмена с окру-
жающей средой (рис. 9). Внутреннее давление и тем-
пература меняются с течением времени в зависимос- 
ти от сжимаемости и теплоемкости газа. В основе ис-
пользуемых функциональных блоков лежат расчетные 
уравнения сохранения массы, баланса энергии, а также 
частные производные массы и энергии по температуре 
и давлению.

Таким образом, входными параметрами моделей ре-
сивера и газовых баллонов выступают T и in_h2 — темпе-
ратура окружающей среды и массовый поток водорода на 
входе в резервуар. Выходными параметрами ИМ ресиве-
ра и газовых баллонов являются газовая линия водорода 
h2_out, s — логический сигнал, оповещающий о предель-
ных значениях давлений в резервуарах, и диагностиче-
ские выходы T, p — температура и давление водорода в 
резервуарах.

На вход компрессора подаются следующие параме-
тры (рис. 10): логические сигналы о предельных зна-
чениях давления в ресивере s_rec и в баллонах s_cyl, 
свободная электрическая мощность, генерируемая ФЭ 
установкой N_exc-N_EL, а также верхнее рабочее зна-
чение электрической мощности компрессора inN_HC.

Выходными параметрами ИМ компрессора слу-
жат (см. рис. 10): газовая линия водорода h2_out, по 
которой поток водорода подается в подсистему, ими-
тирующую баллоны, а также диагностические выходы 
N_HC, P_HC, P_los — соответственно, электрическая 
мощность компрессора, потребленная компрессором 
электроэнергия и остаточная электроэнергия, которая 

Рис. 9. Подсистема Simulink Reciever (rec), имитирующая работу ресивера
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Рис. 10. Подсистема Simulink Hydrogen Compressor (HC), моделирующая водородный компрессор:
Table Gh2_HC(N_HC) — табличные данные зависимости расхода водорода, проходящего через компрессор Gh2_HC, от электри-
ческой мощности, подаваемой на компрессор N_HC (принята линейная зависимость)

теряется из-за отсутствия возможностей поглотить ее 
внутри системы.

Водородный топливный элемент.
Для электроснабжения потребителей малой и сред-

ней мощности (10...100 кВт) с высокими коэффициен-
том полезного действия и экологическими требовани-
ями перспективными считаются энергоустановки на 
базе водородно-воздушных ТЭ.

Подсистема ТЭ имитирует выходную электри-
ческую мощность P_FC в зависимости от заданной 
уставки для топливного элемента и воспроизводит рас-
ход водорода на входе в подсистему in_h2 (рис. 11).

Когда батарея разряжается до 20% своей емкости, 
включается топливный элемент (см. рис. 7), чтобы из-
бежать полного разряда батареи.

Результаты вычислительного эксперимента  
и их интерпретация

Результаты симулирования для давлений и темпера-
тур водорода в хранилище (газовых баллонах) (рис. 12) 

Рис. 11. Подсистема Simulink Fuel Cell (FC), моделирующая ТЭ

отражают изменение внутреннего давления и темпера-
туры водорода как вследствие теплообмена с окружа-
ющей средой, так и при компримировании/дроссели-
ровании газа в баллонах.

Балансировка мощности и потребление энергии 
(рис. 13) симулируется в течении 2021 г., где реализу-
ется сценарий, когда ТЭ полностью отрабатывает на-
грузку в течение четырех месяцев: января, февраля, 
ноября и декабря, а в остальное время происходит под-
страховка АБ от полного разряда.

P_los — потери, возникающие вследствие того, что 
оборудование водородного аккумулирования не пре-
дусматривает параллельную работу [27], т. е. в случае, 
когда ресивер заполнен, компрессор не может сжимать 
водород в баллоны, поскольку водород от общего для 
баллонов коллектора поступает в ТЭ.

Показателем эффективности энергоиспользования 
выступает отношение поставленной потребителям 
электрической энергии к выработанной в этих целях из 
солнечной микрогенерации (рис. 14), где его значение 
ограничено величиной 100%, поскольку в первые зим-
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Рис. 12. Динамика изменения давления и температуры водорода в газовых баллонах в течение 2021 г.

Рис. 13. Потребление электроэнергии по данным 2021 г.:
P_FC — потребление за счет выработки ТЭ; P_PV — потребление за счет ФЭ генерации; P_bat — потребление за счет АБ;  
in_P_PV — генерируемая электроэнергия; P_load — потребление электроэнергии нагрузкой; P_los — потери свободной генери-
руемой электроэнергии

ние месяцы, по данным за 2021 г., покрытие нагрузки 
осуществлялось в основном ТЭ за счет начального ко-
личества водорода в хранилище (см. рис. 12).

Заключение
Разработана балансовая модель автономной мик-

роэлектростанции номинальной мощностью 8 кВт 
с первичной ФЭ генерацией и водородным аккуму-

лированием энергии, управляющая система которой 
обеспечивает согласованную работу созданных под-
систем, имитирующих работу элементов оборудо- 
вания.

Результаты симулирования предложенного соста-
ва оборудования микроэлектростанции демонстриру-
ют, что для надежного покрытия задаваемого в работе 
графика нагрузки в течение всего календарного года, 
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Рис. 14. Коэффициент использования мощности в течении 2021 г.

необходимы ресивер объемом 3 м3 и 60 стандартных 
газовых баллонов объемом 50 л.

Использование разработанной модели показало, 
что эффективность использования энергии за пред-
стваленный период в один календарный год составила 
около 55%.

Наиболее актуальным примененем ИМ могут стать: 
проектирование подобных микроэлектростанций, ана-
лиз устойчивости электроснабжения, оптимизация 
управления и обоснование безопасности при эксплу-
атации установок с водородным аккумулированием 
энергии в виде сжатого газа.
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