УДК 537.52.001.573

Оценка влияния формы лавинно-стримерного перехода на распространение катодонаправленного стримера в воздухе

А. А. Белогловский*

Электронная лавина — это компактная группа свободных электронов, дрейфующих в газе в электрическом поле и производящих ударную ионизацию газа. С электронной лавины начинается формирование стримерного разряда. Стример представляет собой квазинейтральный нетермоионизованный плазменный канал с избыточным зарядом на конце (концах). Преобразование лавины в стример называется лавинно-стримерным переходом, а параметры лавины в момент перехода и путь $x_{\text{криг}}$, пройденный ею до момента перехода, — критическими. Однолавинно-стримерная форма перехода реализуется, когда он происходит в середине разрядного промежутка (на удалении $z > x_{\text{криг}}$ над поверхностью анода), а многолавинно-стримерная форма — когда он протекает вблизи поверхность анода (на малом расстоянии $z < x_{\text{криг}}$ от нее). Значение расстояния *z* влияет на следующие параметры катодонаправленного стримера: скорость, напряженность электрического поля в его головке и канале, концентрация электронов и плотность объемного заряда в канале.

Было проведено несколько вычислительных экспериментов для оценки влияния формы лавинно-стримерного перехода на параметры катодонаправленного стримера. При этом использовалась трехмерная численная модель стримера, созданная автором на кафедре Техники и электрофизики высоких напряжений МЭИ.

Полученные результаты позволили сделать следующие выводы: во-первых, параметры катодонаправленного стримера слабо связаны со значением z, если $z > x_{\rm крит}$ (т. е. после однолавинно-стримерного перехода). Во-вторых, значения параметров катодонаправленного стримера уменьшаются при снижении значения z, если $z < x_{\rm крит}$ (т. е. после многолавинно-стримерного перехода). В-третьих, существует критическое значение $z = z_{\rm крит} (z_{\rm крит} \approx 0.6 x_{\rm крит})$. Катодонаправленный стример не может устойчиво развиваться, если $z < z_{\rm крит}$, так как в этом случае происходит диссипация объемного заряда стримера.

Ключевые слова: электронная лавина, катодонаправленный стример, лавинно-стримерный переход, форма перехода, параметры стримера.

29

^{*} BeloglovskyAA@mpei.ru

Введение

Стримерный электрический разряд в воздухе является источником сильного электрического поля, в котором образуются химически активные частицы (радикалы), участвующие затем в реакциях в воздушной среде. Это позволяет использовать его в промышленных и природоохранных высоковольтных электротехнологиях в качестве источника радикалов [1]. Коронный стримерный разряд служит источником электромагнитных помех, излучаемых воздушными линиями электропередачи (ВЛ). Поэтому математическое моделирование разряда — инструмент для изучения физических процессов в электротехнологических установках и вблизи проводов ВЛ, выработки принципов повышения эффективности электротехнологий и решения проблем электромагнитной совместимости у ВЛ. Изучение свойств электрических разрядов и их математических моделей — важная часть подготовки бакалавров и магистров в области техники и электрофизики высоких напряжений.

Электронная лавина — это компактная группа свободных электронов, дрейфующих в газе в электрическом поле и производящих ударную ионизацию газа, благодаря чему их число возрастает [1]. После ее прохождения в газе остается след из положительных ионов. По мере распространения лавины число электронов в ней и ионов в следе возрастает, а поле между ними ослабевает. Электроны, оставшиеся в ослабленном поле, менее интенсивно участвуют в ударной ионизации и смешиваются с ионами следа, поэтому здесь возникает плазма и формируется стример — нетермоионизированный плазменный канал с избыточным зарядом в головной части, удлиняющийся за счет ударной ионизации газа в ее поле. Преобразование лавины в стример называется лавинно-стримерным (ЛС) переходом, а ее параметры в этот момент — критическими. Путь, пройденный лавиной к этому моменту, именуется критическим путем *х*_{крит}.

В литературе хорошо известны аналитические модели электронной лавины и ЛС-перехода в газе [1], которые дают адекватные качественные оценки интегральных параметров лавины (критического числа электронов в ней и ее критического пути). Известны также численные математические модели, описывающие формирование лавины, ее преобразование в стример и распространение последнего [2, 3]. С их помощью, в частности для случая однородного электрического поля, были построены зависимости параметров стримера от напряженности поля.

Разумно предположить, что параметры стримера зависят не только от напряженности поля, в котором он развивается, но и от места, а значит и механизма, его формирования. Если ЛС-переход происходит в середине разрядного промежутка на удалении от анода $z > x_{\rm криг}$, то реализуется однолавинно-стримерный

механизм перехода [1]. Если ЛС-переход образуется вблизи поверхности анода ($z < x_{\text{крит}}$), то реализуется многолавинно-стримерный механизм перехода [1]. В обоих случаях результатом может стать формирование положительных катодонаправленных стримеров, и их параметры нуждаются в расчете и сопоставлении.

Автором были рассчитаны и проанализированы зависимости от времени максимальных значений концентрации электронов и плотности объемного заряда в стримерах, напряженности электрического поля в их головках и скорости их распространения в разрядном промежутке. Изучены параметры стримеров, развивающихся в воздухе при нормальных атмосферных условиях в сильном однородном электрическом поле с напряженностью (6 — 8)·10⁴ В/см. Исследовано развитие разряда от момента лавинно-стримерного перехода до достижения стримером длины $\approx 0,1$ см.

Математическая модель катодонаправленного стримера в воздухе

Для математического описания стримера использована трехмерная гидродинамическая модель электрического разряда [1], включающая систему дифференциальных уравнений в частных производных (1) — (5) и дополняющие ее граничные и начальные условия. В ней учитываются процессы дрейфа свободных электронов в электрическом поле, ударной ионизации газа электронами, их прилипания, развала отрицательных ионов, ионно-ионной и электронно-ионной рекомбинаций, фотоионизации газа излучением разряда.

В модели отражены процессы, происходящие с тремя видами заряженных частиц: свободными электронами, обезличенными положительными и отрицательными ионами. Поэтому, в нее включены три уравнения неразрывности потока заряженных частиц (1) — (3), описывающие изменение в пространстве и времени концентраций свободных электронов N_e (1), положительных N_{\perp} (2) и отрицательных N ионов (3). Кроме них в модель входят уравнение Пуассона (4), описывающее распределение скалярного потенциала электрического поля φ, и известное уравнение связи (5) между ним и вектором напряженности поля Е. Поскольку скорость дрейфа электронов в поле примерно на два порядка больше, чем ионов [4], то их дрейф в модели не учитывается. С учетом этого уравнения (1) — (5) в данном случае приобретают следующий вид:

 $\partial N_e / \partial t + \operatorname{div}(N_e \mathbf{v}_e) = (\alpha - \eta) N_e |\mathbf{v}_e| + \alpha_p N_{-} |\mathbf{v}_{-}| - \beta_{e^+} N_e N_{+} + S_{\phi}; (1)$

$$\partial N_{+}/\partial t = \alpha N_{e} |\mathbf{v}_{e}| - \beta_{e^{+}} N_{e} N_{+} - \beta_{\pm} N_{+} N_{-} + S_{\phi}; \qquad (2)$$

$$\partial N_{-}/\partial t = \eta N_{e} |\mathbf{v}_{e}| - \alpha_{p} N_{-} |\mathbf{v}_{-}| - \beta_{\pm} N_{+} N_{-}; \qquad (3)$$

$$\Delta \varphi = -(N_{+} - N_{e} - N_{-})e/\varepsilon_{0}; \qquad (4)$$

$$\mathbf{E} = -\operatorname{grad}(\boldsymbol{\varphi}). \tag{5}$$

Здесь \mathbf{v}_{e} , \mathbf{v}_{-} — вектора скоростей дрейфа электронов и отрицательных ионов, соответственно. Правые части уравнений (1) — (3) определяют число частиц (электронов, положительных ионов и отрицательных ионов), появившихся в единице объема в единицу времени благодаря процессам ударной ионизации (коэффициент α), прилипания электронов (η), развала отрицательных ионов (α_{p}), ионно-ионной (β_{\pm}) и электронно-ионной ($\beta_{e^{+}}$) рекомбинаций, фотоионизации (S_{ϕ}). Концентрации частиц, потенциал и напряженность поля являются функциями времени *t* и декартовых пространственных координат *x*, *y*, *z*. Электроны движутся в направлении, противоположном направлению вектора E, т.е. $\mathbf{v}_{e} = -k_{e}\mathbf{E}$, где k_{e} — подвижность электронов.

В уравнениях (1) — (3) зависимости обобщенных коэффициентов элементарных процессов и скорости дрейфа электронов и ионов от напряженности поля определяются в соответствии с рекомендациями, данными в [4], а интенсивность фотоионизации S_ф — в [5], [6].

Система уравнений (1) — (5) дополняется начальными и граничными условиями для концентраций частиц и потенциала на электродах.

В модели принято допущение, что формирование разряда начинается с малой сферической неоднородности в начальном распределении свободных электронов, которая имеет радиус r_1 и располагается на высоте z₁ над поверхностью анода. Максимальная концентрация электронов в ней достигает величины $N_{\rm maxl}$. Поэтому предполагается, что в начальный момент времени t = 0 свободные электроны присутствуют в разрядном промежутке только в этой неоднородности, отсутствуя в остальном его объеме. Кроме того, в начальный момент в пространстве равномерно распределены положительные и отрицательные ионы в равных концентрациях N₀. Максимальная концентрация электронов в начальной неоднородности и значения $N_{\rm max1}$ и N_0 много меньше концентрации нейтральных молекул в воздухе N (при нормальных атмосферных условиях $N \approx 2,67 \cdot 10^{19} \text{ cm}^{-3}$).

Граничные условия для заряженных частиц отражают допущение, что на поверхностях электродов отсутствуют их источники. Поэтому на аноде равна нулю концентрация положительных ионов N_+ , а на катоде — концентрации электронов N_e и отрицательных ионов N_- .

Граничные условия для потенциала соответствуют тому, что в начальный момент t = 0 к аноду прикладывается напряжение U > 0, в дальнейшем остающееся неизменным, а потенциал катода всегда равен 0.

Для численного решения системы уравнений (1) — (5) был предложен эффективный вычислительный алгоритм для расчета трехмерных положительных стримеров в воздухе, отличающийся повышенным быстродействием и устойчивостью, что впервые позволило использовать его в качестве рабочего инструмента для исследования свойств трехмерных объемных стримерных структур разряда в воздухе от электронных лавин и лавинно-стримерного перехода до ветвления стримеров [2]. Он основан на сеточном подходе к решению трехмерных уравнений (1) — (5) и включает в себя численное решение уравнения Пуассона (4) итерационным конечно-разностным методом верхней релаксации [7] и уравнения неразрывности потока электронов (1) — конечно-объемным методом Ван Лира «среднее гармоническое» [8].

Результаты математического моделирования

Была выполнена серия вычислительных экспериментов, имевших целью изучить формирование катодонаправленного стримера и начальный этап его распространения в заполненном воздухе коротком разрядном промежутке с однородным электрическим полем со средней напряженностью $E_0 = U/D$, где D длина промежутка (D = 0,1 см). Атмосферные условия полагались нормальными. Значения Е₀ варьировались от 6.104 до 8.104 В/см. Максимальная концентрация свободных электронов в малой начальной неоднородности в их распределении, которая инициировала возникновение разряда, составляла $N_{\text{max1}} = 10^8 - 10^{10} \,\text{см}^{-3}$, ее радиус был равен $r_{\rm i}$ = 0,005 см, а высота $z_{\rm i}$ над анодом изменялась от 0,01 до 0,05 см. Такой выбор диапазона изменения значений z₁ позволил смоделировать появление и развитие стримера в результате однолавинностримерного и многолавинно-стримерного переходов.

В качестве характерного примера представим результаты, полученные при $E_0 = 7 \cdot 10^4$ В/см, $N_{\rm max1} = 10^9$ см⁻³, $r_1 = 0,005$ см, $z_1 = 0,02 - 0,05$ см. При таких значениях E_0 , $N_{\rm max1}$ и r_1 однолавинно-стримерный переход вдали от электродов занимает время $t_{\rm крит} = 1,082$ нс, а критический путь электронной лавины, порожденной начальной неоднородностью в распределении электронов, составляет $x_{\rm крит} = 0,0348$ см [9]. Таким образом, при $z_1 = 0,02 - 0,03$ см ($z_1 < x_{\rm крит}$) в данном случае имеет место многолавинно-стримерный переход, а при $z_1 = 0,04 - 0,05$ см ($z_1 > x_{\rm кри}$) — однолавинно-стримерный.

На рис. 1, 2 изображены характерные распределения в пространстве напряженности электрического поля E, концентрации свободных электронов N_e (см. рис. 1) и плотности объемного заряда ρ (см. рис. 2) в стримере, а также их изменение во времени t. Приведенные данные позволяют определить для каждого момента t максимальные значения напряженности E_{max} , концентрации электронов N_{emax} , плотности заряда ρ_{max} , а также длину стримера L_s . Значение L_s определяется расстоянием между анодом (z = 0) и точкой $z = L_s$, в которой напряженность поля достигает максимального значения $E_{\max} = E(L_s)$ (см. рис. 1, *a*). Результаты представлены для $z_1 = 0,04$ см, т.е. при однолавинно-стримерном переходе.

На рис. 1 показано изменение во времени распределений E(z) (рис. 1, *a*) и $N_e(z)$ (рис. 1, *б*) вдоль оси симметрии Oz стримера. Здесь z — текущая координата, определяющая удаление рассматриваемой точки от анода (z = 0 на его поверхности и z = D — на катоде). Кривые E(z) и $N_e(z)$ даны для моментов времени t = 1,0; 1,2; 1,4 и 1,6 нс. Первый из них примерно соответствует лавинно-стримерному переходу, а к последнему длина стримера $L_s = 0,0592$ см. Минимальное значение напряженности поля в стримере снижается до критического значения $b\delta = 2,45\cdot10^4$ В/см, ниже которого невозможна эффективная ударная ионизация электронами (здесь δ — относительная плотность воздуха, при нормальных атмосферных условиях равная 1; b — константа для воздуха, равная 2,45·10⁴ В/см). Таким образом, к моменту t = 1,6 нс в промежутке сформировался катодонаправленный стример, максимальная напряженность в котором составляет $E_{\text{max}} = 2,22 \cdot 10^5$ В/см, а концентрация электронов — $N_{\text{emax}} = 6,8 \cdot 10^{14}$ см⁻³. Моменты t = 1,2; 1,4 нс являются промежуточными.

На рис. 2 изображено не только распространение стримера вдоль оси Oz, т.е. вглубь промежутка, но и его развитие в радиальном направлении. На нем отмечены расчетные распределения плотности объемного заряда ρ в плоскости симметрии xOz стримера для t = 1,2; 1,4 и 1,6 нс. Здесь x — текущая координата, определяющая удаление рассматриваемой точки от оси Oz. Распределения $\rho(x, z)$ представлены в виде карт, на которых каждому значению ρ ставится в соответствие свой оттенок. Определяющие это соответствие шкалы приведены рядом с каждым из распределений $\rho(x, z)$. Из приведенных данных следует, что при t = 1,6 нс

Рис. 1. Изменение во времени t распределений напряженности электрического поля E(a) и концентрации свободных электронов $N_e(\delta)$ вдоль оси симметрии Oz стримера при $E_0 = 7.10^4$ В/см, $N_{max1} = 10^9$ см⁻³, $r_1 = 0,005$ см и $z_1 = 0,04$ см

Рис. 2. Изменение во времени *t* распределения плотности объемного заряда ρ в плоскости симметрии *xOz* стримера при $E_0 = 7.10^4$ В/см, $N_{\text{max1}} = 10^9$ см⁻³, $r_1 = 0,005$ см и $z_1 = 0,04$ см; значения ρ указаны в Кл/см³

максимальное значение плотности объемного заряда в стримерной головке близко к $\rho_{max} = 1,4 \cdot 10^{-5} \text{ Кл/см}^3$, а ее радиус, определенный как радиус области, в которой $\rho > 0,5 \rho_{max}$, приближается к 0,01 см.

На рис. З продемонстрированы зависимости значений E_{\max} , $N_{e\max}$, ρ_{\max} , а также скорости V_s распространения головки стримера от его длины L_s и расстояния z_1 между анодом и начальной неоднородностью в распределении электронов. Скорость определяется соотношением $V_s = dL_s/dt$. Величина z_1 , как было сказано выше, определяет форму лавинно-стримерного перехода, и потому сопоставление кривых $V_s(L_s)$ (рис. 3, *a*), $N_{emax}(L_s)$ (рис. 3, *b*), $\rho_{max}(L_s)$ (рис. 3, *b*), $\rho_{max}(L_s)$ (рис. 3, *b*), и $E_{max}(L_s)$ (рис. 3, *b*), полученных при различных значениях z_1 , позволяет оценить влияние формы перехода на параметры катодонаправленного стримера.

На большинстве кривых, приведенных на рис. 3, выделяются две области:

область формирования катодонаправленного стримера ($L_s < 0,06$ см), где происходит быстрое и нелинейное нарастание значений V_s , N_{emax} , ρ_{max} и E_{max} ;

область его устойчивого распространения ($L_s = 0,06 - 0,08$ см), в которой зависимость $V_s(L_s)$ возрастает по закону, близкому к линейному, а значения N_{emax} , ρ_{max} и E_{max} изменяются мало (по сравнению с первой областью).

Единственным исключением является случай $z_1 = 0,02 \text{ см} (z_1/x_{\text{крит}} \approx 0,575, где в рассматриваемых условиях <math>x_{\text{крит}} = 0,0348 \text{ см}$). Здесь длина стримера не превысила 0,03 см, его скорость — 107 см/с, максимальная концентрация электронов после начального роста установилась на значении менее $2 \cdot 10^{14} \text{ см}^{-3}$, а значения максимальной напряженности поля и плотности объемного заряда, первоначально достигнув $1,1\cdot10^5$ В/см и 5,47·10 Кл/см³, начали снижаться. Таким образом, началась диссипация объемного заряда, вынесенного разрядом в межэлектродное пространство. Нужно отметить, что даже названные предельные величины $V_s, N_{emax}, \rho_{max}$ и E_{max} в этом случае по меньшей мере в 2 раза ниже тех, что были получены в случаях $z_1 = 0,025 - 0,05$ см.

При $z_1 = 0,03 - 0,05$ см $(z_1/x_{\text{крит}} = 0,862 - 1,437)$ во второй области кривых $V_s(L_s)$, $N_{\text{етах}}(L_s)$, $\rho_{\text{тах}}(L_s)$ и $E_{\text{тах}}(L_s)$, выделенной выше, расчетные значения перечисленных величин при различных z_1 близки к друг к другу, их расхождения не превышают 25%: $N_{\text{етах}} = (6 - 7) \cdot 10^{14} \text{ см}^{-3}$, $\rho_{\text{тах}} = (1,0 - 1,3) \cdot 10^{-5} \text{ Кл/см}^3$, $E_{\text{тах}} = (2,0 - 2,5) \cdot 10^5 \text{ В/см}$. Стоит заметить, что в этих случаях $z_1 > x_{\text{крит}} (z_1 = 0,04 \text{ и } 0,05 \text{ см})$ или значения z_1 и $x_{\text{крит}}$ близки $(z_1 = 0,03 \text{ см})$, т.е. реализуется однолавинностримерный переход (в первом случае) или близкий к нему механизм (во втором). Отсюда можно заключить,

б

Рис. 3. Зависимости $V_s(L_s)(a)$, $N_{\text{emax}}(L_s)(b)$, $\rho_{\text{max}}(L_s)(a)$ и $E_{\text{max}}(L_s)(a)$ при $E_0 = 7 \cdot 10^4$ В/см, $N_{\text{max}1} = 10^9$ см⁻³, $r_1 = 0,005$ см и $z_1 = 0,02 - 0,05$ см и $z_1 = 0,02 - 0,05$ см и $z_2 = 0,005$ см и $z_1 = 0,005$ см и $z_2 = 0,005$ см и $z_3 = 0,005$ см и $z_4 = 0,005$ см и $z_5 = 0,005$ см $z_5 = 0,005$

что после однолавинно-стримерного перехода параметры стримера слабо зависят от начального расстояния между породившей его лавиной и анодом.

Случай при $z_1 = 0,025$ см ($z_1/x_{крит} \approx 0,718$, т.е. должен реализоваться многолавинно-стримерный переход) является промежуточным между рассмотренными выше. Здесь расчетные значения V_s , N_{emax} , ρ_{max} и E_{max} ниже, чем в предыдущем случае, но, тем не менее, катодонаправленный стример формируется и начинается его устойчивое распространение.

Следовательно, оцененные выше значения параметров стримеров, порожденных многолавинностримерным переходом, ниже их величин у стримеров, формирующихся в результате однолавинностримерного перехода, причем они тем меньше, чем меньше начальное расстояние между анодом и электронной лавиной, инициирующей разряд. При этом существует некоторое пороговое значение этого расстояния, которое можно оценить в $\approx 60\%$ от критического пути лавины: если оно меньше, то инициируемый ею разряд неспособен к устойчивому развитию и происходит его диссипация.

Полученные результаты подтверждаются результатами вычислительных экспериментов, аналогичных описанным выше, но проведенных в однородном электрическом поле с напряженностью 6.10⁴ и 8.10⁴ В/см.

Выводы

В статье представлены результаты вычислительных экспериментов, выполненных для оценки связи между скоростью распространения катодонаправленного стримера, максимальной напряженностью поля, плотностью объемного заряда, концентрацией электронов в нем и формой лавинно-стримерного перехода, который приводит к образованию стримера. Для этого варьировалось расстояние между анодом и начальной электронной лавиной, инициирующей разряд: если оно больше критического пути лавины, то происходит однолавинно-стримерный переход, а если меньше многолавинно-стримерный. Расчеты проведены для заполненного воздухом при нормальных атмосферных условиях промежутка с однородным электрическим полем с напряженностью (6 — 8)-10⁴ В/см. По результатам были сделаны следующие выводы:

После однолавинно-стримерного перехода названные параметры стримера мало зависят от начального расстояния от породившей его лавины до анода.

Значения перечисленных параметров стримеров, порожденных многолавинно-стримерным переходом, ниже их величин у стримеров, сформировавшихся в результате однолавинно-стримерного перехода, причем они тем меньше, чем меньше расстояние между анодом и начальной лавиной.

Существует некоторое пороговое значение расстояния между анодом и начальной лавиной, которое можно оценить в $\approx 60\%$ от ее критического пути: если оно меньше, то инициируемый лавиной разряд не может устойчиво развиться и происходит его диссипация.

Литература

1. Бортник И.М. и др. Электрофизические основы техники высоких напряжений / под ред. И.П. Верещагина. М.: Издательский дом МЭИ, 2010.

2. Белогловский А.А. Верещагин И.П. Трехмерное математическое моделирование стримерного разряда в воздухе с учетом ветвления: экономичный расчет электрического поля // Электричество. 2011. № 11. С. 17 — 24.

3. Papageorgiou L., Metaxas A.C., Georghiou G.E. Three-dimensional numerical modeling of gas discharges at atmospheric pressure incorporating photoionization phenomena // J. Phys. D: Appl. Phys. 2011. V. 44. P. 045203.

4. Соколова М.В., Сергеев Ю.Г. Обобщенные данные по коэффициентам элементарных процессов разрядов в газе // Теория и практика электрических разрядов в энергетике: Сб. статей / под ред. А.Ф. Дьякова. Пятигорск: Изд-во ЮЦПК РП «Южэнерготехнадзор», 1997. С. 26 — 56.

5. Железняк М.Б., Мнацаканян А.Х., Сизых С.В. Фотоионизация смесей азота и кислорода излучением газового разряда // ТВТ. 1982. № 3. Т. 20. С. 423 — 428.

6. Сергеев Ю.Г. Учет фотоионизации при математическом моделировании газового разряда. М.: Изд-во МЭИ, 1996.

7. Самарский А.А., Гулин А.В. Численные методы: учебное пособие для вузов. М.: Наука, 1989.

8. **Юргеленас Ю.В.** Алгоритм расчета динамики заряженных частиц в диффузионно-дрейфовой модели стримера // Физико-технические проблемы передачи электрической энергии: Сб. научн. ст. Вып. 1 / под ред. А.Ф. Дьякова. М.: Изд-во МЭИ, 1998. С. 121 — 160.

9. Белогловский А.А. Сопоставление критериев лавинно-стримерного перехода при численном моделировании электронной лавины в воздушном промежутке с сильным электрическим полем // Электромагнитное поле и материалы (фундаментальные физические исследования): Материалы XXIII Всерос.конф. с междунар. участием. М.: ИНФРА-М, 2015. С. 54 — 61.

Статья поступила в редакцию 30.03.2016