УДК 519.644

Адаптивная процедура вычисления двукратных интегралов

Т. А. Ломоносов*

Адаптивная процедура численного интегрирования широко известна, когда подынтегральная функция есть функция одного переменного. Задача численного интегрирования в многомерных областях куда менее освещена, особенно, когда речь идет о разработке адаптивных процедур.

Рассмотрена задача вычисления двойных интегралов с заданной точностью, простроена адаптивная процедура и описана ее эффективная рекурсивная реализация методом объектноориентированного программирования. При этом проанализированы квадратурные формулы классов РВ (положительно на границе) и РІ (положительно внутри), т. е. все веса положительны, а все узлы находятся строго внутри области интегрирования, либо, как в первом случае, хотя бы один узел находится на границе области.

Соответственно, в первом случае есть надежда на то, что некоторые узлы можно использовать повторно, а во втором есть полная гарантия того, что результат получится в пределах заданной точности.

Рассматриваемая задача является актуальной и позволит с большей долей точности решать уравнения математической физики с помощью метода конечных элементов. Настоящая работа преследует следующую цель: создать эффективный алгоритм численного интегрирования в двумерном случае, который будет давать приемлемые результаты на довольно широком классе функций. Практически интересные интегралы, приведенные в настоящей работе, имеют физический смысл и находят свое применение в области лазерной рефрактографии. Ключевые слова: двумерное численное интегрирование, адаптивная процедура, быстро осциллирующие функции.

Введение

В области лазерной рефрактографии [1] возникает задача вычисления семейства двукратных интегралов вида:

$$A(x, y, z) = -\frac{ikz}{2\pi} \int_{-\infty-\infty}^{\infty} \int_{-\infty-\infty}^{\infty} \frac{e^{ikR(x, y, z)}}{R^2(x, y, z)} A_0(\xi, \eta) e^{-ikln(\xi, \eta)} d\xi d\eta, (1)$$

где *і* — мнимая единица;

 $R(x, y, z) = \sqrt{(x - \xi)^2 + (y - \eta)^2 + z^2}; k >> 1, l и A_0, n$ — заданные физические параметры и функции. Функция A_0 быстро убывает на бесконечности.

Рассмотрим алгоритм адаптивного вычисления двукратных интегралов, обобщающий на двумерный случай известную вертикальную процедуру из [2]. Используем формулы численного интегрирования по треугольникам алгебраических порядков точности d = 3, 5, 7, 11 из [3 — 6]. Опишем эффективную рекурсивную программную реализацию алгоритма. Покажем применение для вычисления серий интегралов типа (1) и продемонстрируем эффективность алгоритма.

Используемые квадратурные формулы

Широко известна квадратурная формула по треугольнику *T* для d = 3. Пусть a_i — вершины; a_{ij} — середины сторон; a_{123} — центр тяжести *T*, а |T| — площадь *T*. Тогда формула такова (см., например [3]):

$$\int_{T} f(x) dx \approx \frac{|T|}{60} (3\sum_{i=1}^{3} f(a_{i}) + 8\sum_{1 \le i < j \le 3} f(a_{ij}) + 27f(a_{123})).$$

Однако апробация данной формулы для вычисления интегралов типа (1) приводит к чрезмерно большим затратам времени, поэтому также были применены фор-

^{*} aladdin93@bk.ru

мулы для d = 5, 7, 11 из [4 - 6], что последовательно привело к заметному уменьшению времени расчета.

Пусть Δ — треугольник с вершинами $V_0 = (0, 0)$, $V_1 = (1, 0)$, $V_2 = (0, 1)$. Следуя [6], построим квадратурную формулу вида:

$$\int_{\Delta} f(x, y) dx dy \approx \sum_{k=1}^{N_0} \lambda_{k,0} f(x_{k,0}, y_{k,0}) + \\ + \sum_{k=1}^{N_1} \lambda_{k,1} f(x_{k,1}, 0) + + \sum_{k=1}^{N_2} \lambda_{k,2} f(0, y_{k,2}) + \\ + \sum_{k=1}^{N_3} \lambda_{k,3} f(x_{k,3}, 1 - x_{k,3}) + \mu_0 f(V_0) + \mu_1 f(V_1) + \mu_2 f(V_2).$$
(2)

На многочленах одной переменной введем линейные функционалы:

$$\langle \mathcal{L}_{s}, g \rangle = \int_{\Delta} g(x) w_{s}(x, y) dx dy - - \sum_{k=1}^{N_{0}} \lambda_{k,0} w_{s}(x_{k,0}, y_{k,0}) g(x_{k,0}), s = 1, 3; \langle \mathcal{L}_{2}, g \rangle = \int_{\Delta} g(y) w_{1}(y, x) dx dy - - \sum_{k=1}^{N_{0}} \lambda_{k,0} w_{1}(y_{k,0}, x_{k,0}) g(y_{k,0}),$$

где $w_1(x, y) = x(1 - x - y); w_3(x, y) = xy; \lambda_{k,j}, x_{k,0}, y_{k,0}$ — такие же, как и в (2).

Алгоритм построения квадратурной формулы порядка точности *d* таков:

Шаг 1. Построим квадратурную формулу порядка точности d - 3 для вычисления интеграла с весом xy(1 - x - y), все узлы которой лежат внутри Δ и положим $\lambda_{k,0} = \lambda_{k,0}^* / [x_{k,0}y_{k,0}(1 - x_{k,0} - y_{k,0})].$

Шаг 2. Построим квадратурные формулы:

$$\langle \mathcal{L}_{s}, g \rangle = \sum_{k=1}^{n} \lambda_{k,s}^{*} g(x_{k,s}), s = 1, 3, \langle \mathcal{L}_{2}, g \rangle = \sum_{k=1}^{n} \lambda_{k,2}^{*} g(y_{k,2}),$$

где g(x) — многочлен одной переменной степени не выше 2n - 3, где d = 2n - 1. Они дают узлы квадратурной формулы на границе Δ (кроме вершин), причем следует положить:

$$\lambda_{k,s} = \frac{\lambda_{k,s}^*}{x_{k,s}(1 - x_{k,s})}; \quad s = 1,3; \quad \lambda_{k,2} = \frac{\lambda_{k,2}^*}{y_{k,2}(1 - y_{k,2})}$$

Шаг 3. Веса μ_0 , μ_1 , μ_2 можно найти из условия обращения формулы (2) в равенство на функциях f(x, y) - 1, x, y и решения получившейся системы линейных алгебраических уравнений.

В частном случае этот алгоритм можно применить для получения симметричных квадратурных формул Гаусса–Лобатто, узлы которых инвариантны относительно перестановки (*x*, *y*, 1 – *y*). Они выглядят следующим образом:

$$\begin{split} &\int_{\Delta} f(x, y) dx dy \approx \sum_{k=1}^{M_0} A_k [f(u_{k,0}, v_{k,0}) + f(v_{k,0}, w_{k,0}) + \\ &+ f(w_{k,0}, u_{k,0})] + \sum_{k=1}^{M_1} B_k [f(u_{k,1}, 0) + f(0, 1 - u_{k,1}) + \\ &+ f(1 - u_{k,1}, u_k)] + C [f(V_0) + f(V_1) + f(V_2)], \end{split}$$

где $w_{k,0} = 1 - u_{k,0} - v_{k,0}$.

Так, формула для d = 5 с 12 узлами отвечает параметрам $M_0 = 1$; $M_1 = 2$; $u_{1,0} = v_{1,0} = \frac{1}{21}(7-\sqrt{7})$; $A_1 = \frac{7}{720}(14-\sqrt{7});$ $u_{1,k} = \frac{1}{42}(21+(-1)^k\sqrt{21(4\sqrt{7}-7)})$ при $k = 1, 2, B_1 = B_2 = \frac{1}{720}(4+\sqrt{7}), C = \frac{1}{720}(8-\sqrt{7}).$

В [4] рассматривается построение квадратурных формул для интегралов вида $\int_{\Omega} f(x, y) dx dy$, где Ω — некоторая область на плоскости. Авторы заинтересованы в квадратурных формулах, которые используют менее чем m_2 узлов и имеют алгебраический порядок точности 2m - 1, где m — заданное натуральное число. Сначала изучается случай Ω -прямоугольника, а затем полученный результат переносится на случай треугольника. Данный переход осуществляется путем выбора четверки ортогональных относительно него многочленов, в то время как для прямоугольника достаточно подобрать пару.

Введем несколько вспомогательных определений. Напомним сначала, что многочлен $P_m(x, y)$ степени *m* (по совокупности переменных) называется ортогональным относительно области Ω , если равенство $\int_{\Omega} P_m(x, y)Q_{m-1}(x, y)dxdy = 0$ верно для всех многочле-

нов Q_{m-1} степени не выше m-1.

Определение. *Многочлены и имеют конечный* общий корень, если и.

Определение. Многочлены $S_1(x, y)$ и $S_2(x, y)$ степени т имеют общий корень в бесконечности, если $\exists y^* \in \mathbb{C} : S_1(\cdot, y^*) \neq 0, S_2(\cdot, y^*) \neq 0, и$ многочлены $S_1(\cdot, y^*)$ и $S_2(\cdot, y^*)$ имеют степень m - 1.

В [4] даны следующие две теоремы.

Пусть $\Omega = (a, b) \times (c, d)$.

Теорема 1. Пусть $S_1 u S_2$ — многочлены двух переменных степени т, ортогональные относительно Ωu имеющие ровно m^2 попарно различных общих корней v_k , причем ни один из них не является корнем в бесконечности. Тогда можно найти такие постоянные $A_k > 0$, что:

$$\int_{\Omega} P_{2m-1}(x, y) dx dy = \sum_{k=1}^{m^2} A_k P_{2m-1}(v_k)$$

для любых многочленов P_{m-1} степени не выше 2m-1.

Таблица 1

Ортогональными относительно квадрата $\Omega = (-1, 1)^2$ являются, например, многочлены $P_m(x, y) = L_k(x)L_{m-k}(y)$, где $L_s(t)$ — многочлен Лежандра степени $s, 0 \le k \le m$.

Теорема 2. При $m \ge 3$ можно построить квадратурную формулу порядка точности d = 2m - 1, использующую менее m^2 узлов и с положительными весами.

Доказательство опирается на использование ортогональных многочленов и применение теоремы (1).

При построении соответствующей квадратурной формулы с положительными весами для Ω -прямоугольного треугольника необходимо наложить дополнительные условия. Во-первых, общие корни многочленов S_1 и S_2 из теоремы 1 должны быть вещественны.

Далее, пусть $J \subset \mathbb{R}$ — наибольший интервал такой, что если $\lambda \in J$, то многочлены $S_4(x, y; \lambda) = S_1(x, y) + \lambda S_3(x, y)$ и $S_2(x, y)$ также удовлетворяют теореме 1 для $\Omega = \Delta$, где S_3 — некоторый ортогональный относительно Ω многочлен, причем множество корней S_3 не совпадает с множествами корней ни S_1 , ни S_2 (но может пересекаться с ними). Тогда достаточные условия для построения квадратурной формулы со свойствами из теоремы 2 следующие:

1. Веса $A_k(\lambda)$, полученные по теореме 1 для $S_4(x, y; \lambda)$ и $S_2(x, y)$, положительны для любого $\lambda \in J$.

2. Если $\lambda^* \in \partial J$, то многочлены $S_4(x, y; \lambda^*)$ и $S_2(x, y)$ имеют конечное число общих корней, и они конечны в смысле определения 1.

3. Общие корни многочленов $S_4(x, y; \lambda)$ и $S_2(x, y)$ как функции от λ непрерывны при $\lambda = \lambda^*$, а также существует $\lim_{\lambda \to \lambda^*, \lambda \in J} A_k(\lambda)$.

В табл. 1 даны узлы и веса формулы с d = 7 для треугольника $\Omega = \Delta$, такого же, как и выше [4, с. 813].

Узлы и веса квадратурной формулы с d = 7

Координаты узлов	Beca		
(0,064634109801617; 0,064634109801617)	0,0263321501360460		
(0,250478764260821; 0,250478764260821)	0,0666750609902085		
(0,405288113134598; 0,405288113134598)	0,0598398472297514		
(0,483428507060240; 0,405288113134598)	0,0302244308027287		
(0,0490241549057468; 0,312418129002285)	0,0387139102462897		
(0,312418129002285; 0,0490241549057468)	0,0387139102462897		
(0,0272654917225016; 0,649829918830148)	0,0223103130816147		
(0,649829918830148; 0,0272654917225016)	0,0223103130816147		
(0,00748092005042521; 0,922929224698637)	0,00930956404694027		
(0,922929224698637; 0,00748092005042521)	0,00930956404694027		
(0,166718687651425; 0,775796880494268)	0,0365382927009296		
(0,775796880494268; 0,166718687651425)	0,0365382927009296		
(0,151969575382297; 0,569101341800312)	0,0515921753448585		
(0,569101341800312; 0,151969575382297)	0,0515921753448585		

4. Легко видеть, что формула порядка точности *d* для заданного треугольника посредством аффинного преобразования преобразуется в формулу того же порядка точности для любого другого треугольника.

В [5] выбирается равносторонний треугольник Δ , вписанный в единичную окружность, с одной из медиан на оси абсцисс. Он является D_3 -областью, т.е. инвариантен относительно поворота на угол $2\pi/3$ вокруг начала координат и отражения относительно оси абсцисс. Важную роль играет переход к полярным координатам $x = \rho \cos\varphi$, $y = \rho \sin\varphi$.

Далее рассмотрим функции $f(\rho, \phi)$ с $0 \le \rho \le 1$ и 2π -периодические по ϕ .

Определение. Функция $f(\rho, \phi)$ называется D_3 функцией, если она удовлетворяет свойству

$$f(\rho, \varphi) = f(\rho, \varphi + \frac{2\pi}{3}) = f(\rho, -\varphi).$$

Определение. Квадратурная формула Q, рассматриваемая как элемент пространства $(C(\Delta))^*$, называется D_3 -формулой, если для любых функций $f \in C(\Delta)$ верны равенства

$$\langle Q, f(\rho, \varphi) \rangle = \left\langle Q, f(\rho, \varphi + \frac{2\pi}{3}) \right\rangle = \langle Q, f(\rho, -\varphi) \rangle.$$

Определение. Базовой D_3 -формулой называется функционал $Q = (\rho, \alpha)$, действующий по правилу

$$\langle \mathcal{Q}(\rho,\alpha), f \rangle = \frac{1}{6} \sum_{j=1}^{3} \left[f(\rho,\alpha + \frac{2\pi j}{3}) + f(\rho,-\alpha + \frac{2\pi j}{3}) \right]$$

Эта формула использует шесть значений fпри $\rho \neq 0$ и $\cos 3\alpha \neq 1$, три значения при $\rho \neq 0$ и $\cos 3\alpha = 1$ (в узлах, лежащих на трех медианах Δ) и одно значение при $\rho = 0$ (тогда $\langle Q(0, \alpha), f \rangle = f(0, 0)$).

Построим квадратурную D_3 -формулу Q, которую представим в виде линейной комбинацией базовых квадратурных формул $Q(\rho_i, \alpha_i)$:

$$\langle Q, f \rangle = \sum_{i=1}^{n} w_i \langle Q(\rho_i, \alpha_i), f \rangle,$$

где (ρ_i , α_i) — полярные координаты узлов квадратурной формулы; w_i — соответствующие им веса.

Чтобы получить формулу порядка точности d для нахождения параметров w_i , ρ_i , α_i , надо решить систему моментных уравнений:

$$\langle Q, \rho^{j} e^{ik\varphi} \rangle = v_{j,k} = \frac{1}{|\Delta|} \int_{\Delta} \rho^{j+1} e^{ik\varphi} d\rho d\varphi.$$

где $0 \le j \le d$, $|k| \le j$, k + j — четно.

Переход к полярным координатам дает большое упрощение при конструировании формул, благодаря следующим результатам [5].

Теорема. Если л не кратно 3, то $v_{j,k} = 0$ и <Q, $\rho^{j}e^{ik\varphi} > = 0$ при любом j. Для любых j, k имеем $v_{j,-k} = v_{j,k}$ и <Q, $\rho^{j}e^{-ik\varphi} > = <Q$, $\rho^{j}e^{ik\varphi} >$.

Любая квадратурная *D*³-формула может быть записана в виде:

$$\begin{split} \langle Q, f \rangle &= w_0 f(0,0) + \sum_{i=1}^{n_1} w_i \langle Q(\rho_i,0), f \rangle + \\ &+ \sum_{i=n_1+1}^{n_1+n_2} w_i \langle Q(\rho_i,\alpha_i), f \rangle, \end{split}$$

где $\cos 3\alpha_i \neq 1$ при $i \ge n_1 + 1$. Количество ее узлов равно $v(Q) = n_0 + 3n_1 + 6n_2$, где $n_0 = 1$ при $w_0 \neq 0$, либо $n_0 = 0$ 0 при $w_0 = 0$. Для нахождения параметров $\{w_i\}_{i=n_0}^{n_1 + n_2}$,

 $\{\rho_i\}_{i=1}^{n_1+n_2}$, $\{\alpha_i\}_{i=n_1+1}^{n_1+n_2}$ следует решить систему нелинейных уравнений:

$$\begin{split} & w_0 + \sum_{i=1}^{n_1} w_i + \sum_{i=n_1+1}^{n_1+n_2} w_i = v_{0,0} \equiv 1; \\ & \sum_{i=1}^{n_1} w_i \rho_i^j + \sum_{i=n_1+1}^{n_1+n_2} w_i \rho_i^j \cos 3k\alpha_i = v_{j,3k} \end{split}$$

где $2 \le j \le d, 0 \le 3k \le j, k+j$ — четно.

В табл. 2 приведены узлы формулы 11-го порядка точности и их кратности, а в табл. 3 — веса, соответствующие узлам из строк табл. 2 [5]. Для узлов указаны пары ζ_1, ζ_2 их барицентрических координат ($\zeta_1, \zeta_2, \zeta_3$); напомним, что $\zeta_3 = 1 - \zeta_1 - \zeta_2$. Здесь v(Q) = 28.

Кратность *m* данного узла означает, сколько различных узлов он порождает при последовательных поворотах на угол $2\pi/3$ вокруг начала координат и отражениях относительно оси абсцисс. Так, узел с

Таблица 2

Узлы квадратурной формулы с *d* = 11 в барицентрических координатах и их кратности

ζ,	ζ ₂	m
0,3333333333333333333	0,33333333333333333333	1
0,09480217181434233	0,2598914092828833	3
0,8114249947041546	0,09428750264792270	3
0,01072644996557060	0,49463677501721470	3
0,5853132347709715	0,2073433826145142	3
0,1221843885990187	0,4389078057004907	3
0	0,858870281826364	6
0,04484167758913055	0,06779376548825502	6

Таблица	3
1 monnym	~

Веса квадратурной формулы с d = 11

w _i
0,087977301116221900
0,026232934661208570
0,11424471598180600
0,05656634416839376
0,2164790926342230
0,20798741611661160
0,04174302699803440
0,2463378925757316

 $(\zeta_1, \zeta_2, \zeta_3) = (1/3, 1/3, 1/3)$ является центром тяжести Δ и при указанных преобразованиях переходит сам в себя, поэтому для него m = 1.

Построение адаптивного алгоритма

Реализованный в работе адаптивный алгоритм является обобщением на двумерный случай вертикальной процедуры из [2]. Пусть Ω — многоугольник, разбитый на треугольники, и требуется вычислить интеграл по треугольнику *T*. Формула правила Рунге практической оценки погрешности для прямоугольного равнобедренного треугольника T_h с катетом *h* такова:

$$R_h = \frac{|I_{h/\sqrt{2}} - I_h|}{2^{(d+1)/2} - 1},$$

где I_h — квадратурная формула для вычисления интеграла по T_h алгебраического порядка точности d; $I_{h/\sqrt{2}}$ — ее составной вариант по объединению двух треугольников с катетами $h/\sqrt{2}$, полученных разбиением T_h пополам с помощью высоты, проведенной из вершины прямого угла.

Алгоритм использует переход к вычислению интеграла по тому подтреугольнику, который лежит слева от этой высоты. Оба подтреугольника можно получить из исходного с помощью поворота и сжатия. Пусть x_v — вершина треугольника, x_a — вектор, направленный от вершины прямого угла к середине гипотенузы, x — текущая точка треугольника. Тогда соответствующая точка левого (правого) треугольника получается по формуле:

$$Ux = \begin{pmatrix} -0, 5 & \pm 0, 5 \\ \mp 0, 5 & -0, 5 \end{pmatrix} (x - x_{\nu}) + x_{\nu} + x_{a},$$

где в матрице берутся верхние (нижние) знаки.

В начале работы алгоритм обращается к интегрированию по всему треугольнику *T*.

Исходная область интегрирования может быть неограниченной, в частности, совпадать с \mathbb{R}^2 . В последнем случае для вычисления интеграла с точностью $\varepsilon > 0$ сначала следует подобрать многоугольник Ω_{ε} , такой, что модуль интеграла по $\mathbb{R}^2 \setminus \Omega$ меньше $\varepsilon/2$, а интеграл по Ω_{ε} вычислять с точностью $\varepsilon/2$.

Программная реализация

Описанный выше алгоритм является рекурсивным. Это обеспечивает возможность его компактной реализации на языке С⁺⁺ с применением методов объектноориентированного программирования (ООП). Вычисление интегралов реализовано в виде шаблонного класса, что позволяет легко использовать программу как для вещественно-, так и комплекснозначных функций. Класс TriangleIntegral представляет собой набор членов и методов для вычисления интегралов в заданном треугольнике.

template <class T> class TriangleIntegral {

- private: double A1, double B1, double C1, bool Left;
- RPoint GetUpper(RPoint X, double xv, double yv, double AscX, double AscY);
- RPoint GetLower(RPoint Y, double xv, double yv, double AscX, double AscY);
- public: typedef T(*OscFunc3)(RPoint X);
- int FuncCalls, OscFunc3 osf, double Cathetus;
- RPoint GetStartLower(RPoint X);
- RPoint GetStartUpper(RPoint X);
- RPoint GetStartLowerInv(RPoint X);
- TriangleIntegral(OscFunc3 f, double c);
- void Trapeze(RPoint A, RPoint B, RPoint C, T fA, T fB, T fC, double eps, T &I);
- void ThirdDegree(RPoint Point[7], T fPoint[7], double eps, T &I);
- void FifthDegree(RPoint Point[12], T fPoint[12], double eps, T &I);
- void SeventhDegree(RPoint Point[14], T fPoint[14], double eps, T &I, RPoint Vertex[3]); void EleventhDegree(RPoint Point[14], T fPoint[14], double eps, T &I, RPoint Vertex[3]);};

Методы класса GetUpper и GetLower выполняют пересчет координат узлов, изначально заданных в глобальном массиве для стандартного треугольника Δ с вершинами (0, 0), (1, 0), (0, 1), в координаты соответствующих узлов в преобразованных треугольниках. Методы ThirdDegree, FifthDegree, SeventhDegree и EleventhDegree реализуют двумерные квадратурные формулы 3-го, 5-го, 7-го и 11-го порядка точности соответственно. Программная реализация последнего метода класса EleventhDegree представлена ниже.

template <class T> void

```
TriangleIntegral<T>::EleventhDegree(RPoint Point[31], T
fPoint[31], double eps, T &I, RPoint Vertex[3]) {
double h = Length(Vertex[0],Vertex[1]);
RPoint V[3];
RPoint Median[3];
Median[0] = DistanceX(0.5, Vertex[0],Vertex[1]);
Median[1] = DistanceX(0.5, Vertex[1],Vertex[2]);
Median[2] = DistanceX(0.5, Vertex[2],Vertex[0]);
bool InCircle = false;
```

for (int i = 0; $i \le 2$; i + +) if (Median[i].norm2() <= Cath) { InCircle = true; } if (!InCircle) return; RPoint D[56]; T fD[56]; Min++; double AbsX = Median[1].x - Vertex[0].x;doubleAbsY =Median[1].y - Vertex[0].y; for (int i = 0; i < 28; i++) { D[i] =GetLower(Point[i], Vertex[0].x, Vertex[0].y, AbsX, AbsY); fD[i] = osf(D[i]);for (int i = 0; i < 28; i++) { D[i+28] =GetUpper(Point[i], Vertex[0].x, Vertex[0].y, AbsX, AbsY); fD[i+28] = osf(D[i+28]);FuncCalls += 56; T Ih = 0; for (int i = 0; i < 28; i++) Ih += weight11[i]*fPoint[i]; Ih *=(h*h)/2;T Ih2A = 0; for (int i = 0; i < 28; i++) Ih2A += weight11[i]*fD[i];Ih2A *=(h*h)/4.0;T Ih2B = 0;for (int i = 0; i < 28; i++) $Ih2B \rightarrow weight11[i] fD[i+28];$ Ih2B *=(h*h)/4.0;T r = Ih - Ih2A - Ih2B;if (abs(r) < 63*eps/(Cathetus*Cathetus)) I += Ih2A + Ih2B;else { for (int i = 0; i < 28; i++) { Point[i] = D[i];fPoint[i] = fD[i]; for (int i = 0; $i \le 3$; i++) { V[i] =GetLower(Vertex[i], Vertex[0].x, Vertex[0].y, AbsX, AbsY); } EleventhDegree(Point,fPoint,eps,I,V); for (int i = 0; i < 28; i + +) { Point[i] = D[i+28];fPoint[i] = fD[i+28];for (int i = 0; i < 3; i++) { V[i] =GetUpper(Vertex[i],Vertex[0].x,Vertex[0].y,AbsX,AbsY); EleventhDegree(Point, fPoint, eps, I,V);

В данной реализации метода в качестве области интегрирования выбирается круг, поскольку подынтегральная функция в (1) имеет удобный вид для интегрирования в полярных координатах.

Сама процедура является основной: ее рекурсивное выполнение обеспечивает существенную компактность

Рис. 1. Круглый пучок с цилиндрической неоднородностью с параметрами $a_1 = a_2 = 5$ мм; левый график отвечает выбору знака «+», а правый — знака «-»

Рис. 2. Плоский пучок с цилиндрической неоднородностью с параметрами $a_1 = 30$ мм, $a_2 = 5$ мм; левый график отвечает выбору знака «+», а правый — знака «-»

кода по сравнению с нерекурсивными аналогами. Она интуитивно понятна даже тем, кто не знаком с языком.

Пустые строки используются как визуальный разделитель разных блоков алгоритма: выделяется блок инициализации, за ним идет блок проверки принадлежности элементарного треугольника кругу, по которому идет интегрирование, и т. д.

Эта же компактность обеспечивает (при необходимости) достаточно простой переход к использованию квадратурных формул более высокого порядка точности.

Таблица 4

Относительное время работы алгоритма при разных значениях z в зависимости от порядка точности d

Z,MM	3	5	7	11
1000	1	4,4	14,1	24,2
800	1	7,4	16,2	29,6
500	1	10,6	25,1	45,3
300	1	13,3	31,9	60,2
Суммарно	1	11,2	27,0	50,0

Благодаря одному из классических принципов ООП, можно создать классы-наследники данного класса для разных областей, и проводить триангуляцию произвольной области. Например, можно создать класс, который будет вычислять интеграл по квадрату.

template<classT>classSquareIntegral:publicTriangleIntegral<T>

private: double Left, Top, Right, Bottom;

public: SquareIntegral(double l,double t,double r,double b,TriangleIntegral<T>::OscFunc3 f, double C): TriangleIntegral<T>(f,C) { Left = l; Top = t; Right = r; Bottom = b;

)

T computeIntegralTrapeze(double eps);

T computeIntegralFifth(double eps);

T computeIntegralSeventh(double eps);

T computeIntegralEleventh(double eps);

}

Список формальных параметров процедуры вычисления значительно отличается от такового в базовом классе и содержит только желаемую точность. Поэтому интерфейс этого класса дружествен по отношению к пользователю. Естественно, метод базового класса EleventhDegree вызывается внутри метода computeIntegralEleventh.

Результаты вычислений

Приведем результаты вычисления интегралов типа (1) при нескольких *z*. Значения *x* и *y* меняются от 0 до 2,5 мм с шагом 0,1 мм. Расчеты выполнены с точностью $\varepsilon_0 = 0,005$. Значения параметров: $k = 2\pi/\lambda$, $\lambda = 0,6328 \cdot 10^{-3}$ мм.

В табл. 4 представлено относительное время вычислений интеграла (1) при разных *z* в зависимости от *d* для довольно типичных функций $A_0(\xi,\eta) = \exp\{-\frac{\xi^2 + \eta^2}{w^2}\}$ и $n(\xi,\eta) = n_0 - \Delta n \exp\{-\frac{\xi^2 + \eta^2}{a^2}\}$, где w = 1,5 мм, a = 5 мм, $n_0 = 1, \Delta n = 0,001$ при l = 0,5 мм. Для формулы с d = 3

 m_0 1, 2*м* 6,001 при *t* 6,5 мм. деля формулы с *a* 5 время условно принято равным 1, а для формул с другими *d* указан коэффициент его уменьшения по отношению к случаю *d* = 3. В частности, переход от *d* = 3 к *d* = 11 многократно сокращает время вычислений.

Проведены также расчеты с прежней $A_{\scriptscriptstyle 0}$ и более сложной:

$$n(\xi, \eta) = n_0 \pm \Delta n \exp\{-\frac{\xi^2}{a_1^2} - \frac{(\eta - 3)^2}{a_2^2}\}$$

при *l* = 5 мм мм. Результаты представлены на рис. 1, 2. Автор признателен проф. А.А. Злотнику за поста-

новку задачи и постоянную помощь в работе. Исследование выполнено при поддержке гранта Российского научного фонда (соглашение № 14-11-00306).

Литература

1. Евтихиева О.А., Расковская И.Л., Ринкевичюс Б.С. Лазерная рефрактография. М: Физматлит, 2008.

2. Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы. М.: Бином, Лаборатория знаний, 2011.

3. Сьярле Ф. Метод конечных элементов для эллиптических задач. М: Мир, 1980.

4. Franke R. Obtaining cubatures for rectangles and other planar regions by using orthogonal polynomial // Math. Comp. 1971. V. 25. P. 803 — 813.

5. Lyness J.N., Jespersen D. Moderate degree symmetric quadrature rules for the triangle // J. Inst. Math. Appl. 1975. V. 15. N 1. P. 19 — 32.

6. Yuan Xu. On Gauss-Lobatto integration on the triangle // SIAM J. Numer. Anal. 2011. V. 49. P. 541 — 548.

Статья поступила в редакцию 17.02.2016