УДК 004.052.32 DOI: 10.24160/1993-6982-2021-6-108-114

Вычисление коэффициента ускорения испытаний на безотказность на основе тепловизионного анализа кристалла сверхбольших интегральных схем

А.Я. Кулибаба, А.С. Силин

Представлен новый способ оценки коэффициента ускорения форсированных испытаний на безотказность сверхбольших интегральных схем (СБИС). В его основе лежит тепловизионный анализ кристалла испытуемой СБИС. В настоящее время расчет коэффициента ускорения для проведения испытаний на безотказность СБИС проводят по закону Аррениуса, где коэффициент зависит от температуры кристалла. Температура кристалла, в свою очередь, представлена суммой температуры корпуса и произведения максимальной рассеиваемой мощности и теплового сопротивления «кристалла – корпус». Недостаток существующего способа заключается в том, что расчет проводится по одному значению температуры кристалла, полученному аналитически. Однако СБИС является сложной системой, и судить о коэффициенте ускорения испытаний по одному значению температурам множества точек на поверхности кристалла СБИС. Это позволит учитывать влияние тестовой последовательности на распределение температуры по поверхности кристалла, подбирая тестовые последовательности таким образом, чтобы обеспечить максимальный и равномерный нагрев кристалла. Благодаря предложенному способу становится возможным более точное вычисление коэффициента ускорения испытаний, а также потенциальное увеличение его за счет подбора тестовой последовательности. Более точный расчет коэффициента ускорения испытаний, а также потенциальное увеличение его за счет подбора тестовой последовательности. Более точный расчет коэффициента ускорения испытаний, а также потенциальное увеличение его за счет подбора тестовой последовательности. Более точный расчет коэффициента ускорения испытаний на безотказность. Предложенный способ оценки коэффициента ускорения подтвержден экспериментально. Дано описание рабочего места, расчеты коэффициентов ускорения испытаний на безотказность двумя способами и их сравнение.

Ключевые слова: безотказность, коэффициент ускорения, форсированные испытания, СБИС.

Для цитирования: Кулибаба А.Я., Силин А.С. Вычисление коэффициента ускорения испытаний на безотказность на основе тепловизионного анализа кристалла сверхбольших интегральных схем // Вестник МЭИ. 2021. № 6. С. 108—114. DOI: 10.24160/1993-6982-2021-6-108-114.

Evaluating the Reliability Testing Acceleration Factor Based on VLSI Chip Infrared Image Analysis

A.Ya. Kulibaba, A.S. Silin

A new approach for evaluating the acceleration factor of forced reliability tests of very large scale integrated circuits (VLSI) is presented. The approach is based on subjecting the VLSI chip to an infrared image analysis. Currently, the VLSI reliability testing acceleration factor is evaluated based on the Arrhenius law, according to which this factor depends on the chip temperature. The chip temperature, in turn, is represented by the sum of the chip package temperature and the product of the maximum dissipated power and the chip-to-package thermal resistance. The drawback of the existing method is that the calculation is carried out for only a single chip temperature value that was obtained analytically. But the VLSI is a complex system, and it is not correct to judge about the testing acceleration factor proceeding from a single chip temperature value. It is proposed to calculate the VLSI reliability testing acceleration factor based on the temperatures at many points on the VLSI chip surface. This will make it possible to take into account the test sequence influence on the temperature distribution over the chip surface, thereby helping select the test sequences so that to obtain the maximal and uniform chip heating. Owing to the proposed method, it becomes possible to evaluate the testing acceleration factor more accurately and also to potentially increase it by choosing the test sequence. A more accurate evaluation of the acceleration factor allows the reliability tests reliability to be improved. The proposed method for evaluating the acceleration factor was validated experimentally. The workplace is described, the calculations of the reliability testing acceleration factors using two approaches are carried out, and their comparison is given.

Key words: reliability, acceleration factor, forced testing, VLSI

For citation: Kulibaba A.Ya., Silin A.S. Evaluating the Reliability Testing Acceleration Factor Based on VLSI Chip Infrared Image Analysis. Bulletin of MPEI. 2021;6:108—114. (in Russian). DOI: 10.24160/1993-6982-2021-6-108-114.

Введение

Согласно [1] испытанием на безотказность (ИБО) называют эксперимент, проводимый с целью измерения количественной оценки или классификации показателей безотказности. Его выполняют на партиях тестовых элементов, которые в дальнейшем не используют. При ИБО подразумевают, что испытуемые элементы должны полностью выработать свой ресурс и отказать из-за старения. Время проведения испытания в условиях планируемой эксплуатации изделия совпадает со сроком его эксплуатации, составляющим годы и десятки лет.

Для сокращения времени проведения ИБО применяют расчетно-экспериментальный метод [2, 3], при котором эксперимент имитирует определенный отрезок работы изделия, в течение которого собирают необходимые данные, затем экстраполируют на срок активного существования и делают выводы, подтверждающие или не подтверждающие требуемый срок активного существования.

В дополнение к указанному методу сокращения длительности испытаний используют метод ускорения испытаний. Ускоренные испытания также называют форсированными. Они основаны на интенсификации физико-химических процессов, приводящих к отказу изделия. Интенсификация достигается за счет повышения (форсирования) уровня воздействующих факторов относительно режима эксплуатации. Выбор режима и определение функции пересчета результатов форсированных испытаний к нормальному режиму (режиму эксплуатации) осуществляют на этапе предварительных исследований.

Для более полного понимания ИБО рассмотрим кривую интенсивности отказов на рис. 1 [4]. На ней можно отметить три участка. Первый отражает период приработки, в течение которого выходят из строя некачественные изделия. Второй — период нормальной работы, в котором интенсивность отказов держится на постоянном малом уровне. Третий — период износа, когда изделия начинают отказывать из-за старения.

Изделия на первом участке кривой интенсивности отказов отсеивают при помощи электротермотренировки (ЭТТ). Тестовые последовательности, используемые при ЭТТ, должны задействовать максимальное количество внутренних структур изделия, чтобы быстро выявить и усугубить скрытые дефекты, тем самым привести к дрейфу параметров или функциональному отказу ненадежного изделия и не допустить его использование в высоконадежной аппаратуре. При ИБО тестовые последовательности имитируют реальную работу (миссию) компонента с целью выяления отказов, возникающих в реальных условиях. Проводить ИБО в эксплуатационных режимах слишком долго, и за большой промежуток времени накапливается мало информации о деградации параметров изделия. Поэтому испытания ускоряют в количество раз, численно равное коэффициенту ускорения К_{уск}, рассчитанному во время предварительных испытаний.

Ускоренные испытания менее продолжительны, чем нормальные, но более информативны в смысле точности и достоверности получаемых оценок [5]. Отсюда следует, что точность расчета К_{уск} влияет на достоверность ИБО.

Существующий способ определения коэффициента ускорения

В настоящее время для ИБО СБИС при испытаниях установлена температура выше эксплуатационной. Расчет коэффициента ускорения опирается на предельно допустимую температуру кристалла СБИС, максимальную рассеиваемую мощность P_{dis} и тепловое сопротивление кристалл – окружающая среда Θ_{ia} представленные в документации производителя СБИС [6].

$$T_i = T_a + P_{dis}\Theta_{ia}$$

где T_j, T_a — температура кристалла и окружающей среды, °С.

Математическая формула определения К_{уск} для СБИС согласно [2] зависит от температуры кристалла при эксплуатации T_{i^3} и испытании T_{i^4} при соблюдении условия $T_{jn} \ge T_{j}$, и выглядит следующим образом. При T_{j} , и $T_{jn} \le 70$ °C:

$$K_{yc\kappa} = \exp\left[\frac{E_{a1}}{k}\left(\frac{1}{T_{j9} + 273} - \frac{1}{T_{j\mu} + 273}\right)\right]$$

При 71 °C $\leq T_{_{j_3}} \leq$ 150 °C и 71 °C $\leq T_{_{j_4}} \leq$ 150 °C:

$$K_{\rm yck} = \exp\left[\frac{E_{\rm a2}}{k} \left(\frac{1}{T_{j9} + 273} - \frac{1}{T_{j4} + 273}\right)\right];$$

При $T_{j_{2}} \le 70$ °C и 71 °C $\le T_{j_{1}} \le 150$ °C:

$$\begin{split} K_{\rm yck} &= \exp \Bigg[\frac{E_{\rm a1}}{k} \Bigg(\frac{1}{T_{j_9} + 273} - \frac{1}{70 + 273} \Bigg) + \\ &+ \frac{E_{\rm a2}}{k} \Bigg(\frac{1}{71 + 273} - \frac{1}{T_{j_{\rm H}} + 273} \Bigg) \Bigg], \end{split}$$

где $E_{\rm a1}, E_{\rm a2}$ — энергии активации (табличные значения), эВ; k — постоянная Больцмана, $k = 8,617 \cdot 10^{-5}$ эВ.

Предлагаемый способ определения коэффициента ускорения

Реальные значения выделяемой мощности и теплового сопротивления СБИС отличаются от указанных в документации производителя, что приводит к недостаточно точному значению $K_{_{\rm VCK}}$. Также при ИБО, как правило, не учитывают влияние тестовой последовательности на распределение температуры по площади кристалла СБИС, что тоже снижает точность расчета $K_{_{\rm yck}}.$

ИНФОРМАТИКА, ВЫЧИСЛИТЕЛЬНАЯ ТЕХНИКА И УПРАВЛЕНИЕ

Предложен более точный расчет коэффициента ускорения испытаний с учетом распределения температуры по площади поверхности кристалла, которую можно зафиксировать у СБИС со вскрытым корпусом с помощью тепловизора, а затем по тепловизионному снимку вычислить *K*_{vec}.

Предположим, что все пиксели тепловизионного снимка кристалла СБИС соединены последовательно в структурную схему надежности, тогда модель интенсивности отказов кристалла СБИС равна [7]:

$$\lambda = \sum_{i=1}^{N} \lambda_i, \tag{1}$$

где λ — интенсивность отказов кристалла СБИС, ч⁻¹; λ_i — интенсивность отказов *i*-го пикселя тепловизионного снимка кристалла СБИС, ч⁻¹; *N* — общее количество пикселей тепловизионного снимка кристалла СБИС, шт.

Расчетное значение интенсивности отказов кристалла СБИС при различных температурах определим согласно модели:

$$\lambda = \lambda_6 K_t, \tag{2}$$

где λ_6 — базовая интенсивность отказов кристалла СБИС, ч⁻¹; K_1 — коэффициент влияния температуры на интенсивность отказов кристалла СБИС [8]:

$$K_t = \exp\left(\frac{E_a}{k_6} \left(\frac{1}{T_0} - \frac{1}{T_A}\right)\right),\tag{3}$$

где E_a — энергия активации; k_6 — константа Больцмана; T_0 — типовая температура кристалла; T_A — температура кристалла, для которой выполняется расчет значения интенсивности отказов кристалла СБИС.

 $K_{_{yck}}$ испытаний кристалла СБИС вычислим по формуле:

$$K_{\rm yck} = \lambda_{\rm H} / \lambda_{\rm y},$$
 (4)

где λ_{и,} λ₃ — интенсивности отказов кристалла СБИС при испытаниях и эксплуатации.

При подстановке в (4) выражений (1) — (3) получим:

$$K_{\text{yck}} = \frac{\sum_{i=1}^{N} \lambda_i^{\text{\tiny H}}}{\sum_{i=1}^{N} \lambda_i^{\text{\tiny S}}} = \frac{\sum_{i=1}^{N} \lambda_6 \exp\left(\frac{E_a}{k_6} \left(\frac{1}{T_0} - \frac{1}{T_{\text{\tiny H}i}}\right)\right)}{\sum_{i=1}^{N} \lambda_6 \exp\left(\frac{E_a}{k_6} \left(\frac{1}{T_0} - \frac{1}{T_{\text{\tiny S}i}}\right)\right)},$$
(5)

Воспользовавшись свойством экспоненты $e^{a-b} = e^a e^{-b}$

в (5), сократим общий множитель $\lambda_{\delta} \exp\left(\frac{E_a}{k_{\delta}}\frac{1}{T_0}\right) \neq 0,$

что позволит получить формулу для расчета K_{yck} кристалла СБИС по тепловизионному снимку:

$$K_{\text{yck}} = \frac{\sum_{i=1}^{N} \exp\left(\frac{-E_{\text{a}}}{k_{\text{b}}} \frac{1}{T_{\text{u}i}}\right)}{\sum_{i=1}^{N} \exp\left(\frac{-E_{\text{a}}}{k_{\text{b}}} \frac{1}{T_{\text{y}i}}\right)}.$$

Эксперимент

Для проведения исследований взята партия микросхем, широко используемых и распространенных микроконтроллеров производства Silicon Labs [9] в количестве 80 шт. Микроконтроллеры представляют интерес в качестве СБИС со множеством различных встроенных функциональных блоков и содержат:

- сверхскоростное ядро 8051;
- память;
- аналоговую периферию (в т. ч. АЦП, ЦАП);
- цифровую периферию (в т.ч. UART);
- источники тактового сигнала;
- встроенный отладчик.

На рабочем месте использован тепловизор [10], различающий температуру с разницей до 0,03 °С и точностью измерений ±2°С. Тепловизионная картинка рассматриваемой области имеет разрешение 320×240 пикселей, из которых 39×41 пикселей занимает кристалл размерами 4,8×5,0 мм вскрытой исследуемой микросхемы микроконтроллера.

Тепловизор расположен на расстоянии 30 см от объекта исследования, что соответствует его минимальному фокусному расстоянию. Объект исследования находится в фокальной плоскости и открытой частью кристалла обращен к тепловизору.

Лабораторный источник обеспечивает питание микроконтроллера.

Амперметр передает показания о токе потребления микросхемы в каждом из четырех режимов работы. Режим работы определен встраиваемым в микроконтроллер программным обеспечением, которое активирует один из интересующих блоков.

В нашем случае задействованы в первой прошивке (ADC) — аналого-цифровой преобразователь микроконтроллера, во второй (DAC) — цифро-аналоговый преобразователь, в третьей (GPIO) — входы/выходы, в четвертой (UART) — универсальный асинхронный приемопередатчик.

В каждой прошивке имеется один и тот же вывод, запрограммированный на выход. Он нагружается, и на нем измеряют выходное напряжение. Вольтметр служит для измерения выходного напряжения и контроля напряжения питания микросхемы.

Для изменения температуры окружающей среды взят нагреватель. На него устанавливается оснастка с контактирующим устройством (КУ), в которое встраивается вскрытый образец микросхемы. Изображение рабочего места представлено на рис. 2.

На собранном рабочем месте выполнены измерения для случайной выборки из партии в количестве трех микросхем. Каждая микросхема поочередно зашита четырьмя прошивками, после каждого программирования микроконтроллер выводится в рабочий режим, выдерживается пауза для установления теплового равновесия, измеряются электрические параметры (ток потребления, выходное напряжение), сохраняется

Вестник МЭИ. № 6. 2021

Рис. 2. Рабочее место

картинка распределения температуры по поверхности кристалла.

Указанные операции повторяются при трех температурах окружающей среды: 23, 39 и 49 °С.

Результаты эксперимента

В ходе эксперимента получены фото распределения температуры по поверхности кристалла и выявлено,

что в зависимости от того, какой блок активен, изменяется картина распределения температуры (рис. 3).

По тепловизионным снимкам рассчитана средняя температура кристалла для каждой прошивки при трех различных температурах окружающей среды. Результаты сведены в табл. 1.

В таблице 2 собраны рассчитанные разными способами значения $K_{_{\rm VCK}}$ для всех версий прошивок микро-

Рис. 3. Тепловизионные снимки кристалла микроконтроллера с прошивками ADC, DAC, GPIO, UART

Таблица 1

Номер СБИС	Температура окружающей среды, °С	Параметр	Имя прошивки			
			ADC	DAC	GPIO	UART
1	$T_{1} = 23$	T _{cp}	29,1109	30,0307	29,8343	30,3068
		СКО	0,57250	0,64940	0,65460	0,66840
	T ₂ = 39	T _{cp}	46,2053	46,8405	46,7495	46,9858
		СКО	1,89530	1,65430	1,69210	1,59510
	$T_{3} = 49$	T _{cp}	53,9895	54,3448	54,2780	54,7164
		СКО	2,71300	2,58540	2,60440	2,44550
2	$T_{1} = 23$	$T_{\rm cp}$	29,8941	30,3454	30,2847	30,2846
		СКО	0,37060	0,41520	0,37210	0,45200
	$T_2 = 39$	T _{cp}	46,0335	46,8255	46,3579	46,4845
		СКО	0,98700	0,99920	0,98060	1,00810
	$T_{3} = 49$	T _{cp}	52,4458	52,8974	53,0742	53,2566
		СКО	1,46130	1,48540	1,47240	1,52730
3	$T_1 = 23$	T _{cp}	30,5018	31,0450	30,8189	29,3374
		СКО	0,52670	0,60450	0,61520	0,54710
	T ₂ = 39	T _{cp}	46,0143	46,5324	45,8595	45,7684
		СКО	1,11480	1,18490	1,13610	1,14720
	$T_{3} = 49$	T _{cp}	52,1441	52,3752	51,5505	52,6407
		СКО	1,42120	1,64790	1,34930	1,51440

Средние значения температур и их СКО по тепловизионным снимкам СБИС

Таблица 2

Результаты расчета $K_{_{\mathrm{yck}}}$ тремя различными способами

	Версия ПО	Рассчитанное значение <i>К</i> _{уск}				
Номер СБИС		Матрица температур с тепловизионного снимка	<i>T</i> _{ср} , определенная по тепловизионному снимку	Учет теплового сопротивления		
1	ADC	7,8765	7,7355	8,3423		
	DAC	7,4410	7,3241	8,2189		
	GPIO	7,5351	7,4149	8,2414		
	UART	7,4533	7,3515	8,1829		
2	ADC	6,4482	6,4138	8,3019		
	DAC	6,4143	6,3799	8,1727		
	GPIO	6,5366	6,5014	8,1943		
	UART	6,6296	6,5926	8,1434		
3	ADC	5,9661	5,9393	8,2918		
	DAC	5,8006	5,7633	8,1619		
	GPIO	5,5056	5,5177	8,1818		
	UART	6,8752	6,8399	8,1335		

Вестник МЭИ. № 6. 2021

Таблица 3

Отличия значений К_{уск}, % Номер СБИС Версия ПО $T_{\rm cn}$, найденная по тепловизионному Матрица температур, определенная с тепловизионного снимка снимку 7.270 ADC 5.580 DAC 9,470 10,89 1 8,570 GPIO 10,03 UART 8,920 10,16 ADC 22,33 22,74 21.94 DAC 21.52 2 GPIO 20,23 20,66 18,59 19,04 UART 28,37 ADC 28,05 DAC 28,93 29,39 3 GPIO 32.71 32.56 UART 15,47 15.90

Отличия значений K_{уск}, рассчитанных по тепловизионному снимку от значений b полученных с помощью расчета через тепловое сопротивление

контроллера. По приведенным результатам видно, что рассчитанные K_{yck} по тепловым снимкам несколько ниже, чем K_{yck} , полученные с опорой на данные из документации производителя.

В таблице 3 дана разница между используемой методикой расчета K_{vex} и предлагаемой.

Выводы

При расчете коэффициента ускорения предложенным способом, а именно, с учетом влияния функци-

Литература

1. ГОСТ Р 27.607—2013. Надежность в технике. Управление надежностью. Условия проведения испытаний на безотказность и статистические критерии и методы оценки их результатов.

2. ГОСТ Р 57394—2017. Микросхемы интегральные и приборы полупроводниковые. Методы ускоренных испытаний на безотказность.

3. Кулибаба А.Я., Прищепова С.П., Штукарев А.Ю. Проблемы ускоренных испытаний электронной компонентной базы на надежность // Ракетно-космическое приборостроение и информационные системы. 2014. Т. 1. Вып. 2. С. 81—85.

4. **Горлов М.И., Емельянов В.А., Строгонов А.В.** Геронтология кремниевых интегральных схем. М.: Наука, 2004.

5. **Перроте А.И., Карташов Г.Д., Цветаев К.Р.** Основы ускоренных испытаний радиоэлементов на надежность. М.: Сов. радио, 1968.

6. Булаев И.Ю., Чистов А.С., Штукарев А.Ю. Испытания электронной компонентной базы на сохраняональной последовательности, воздействующей на СБИС, и распределения температуры по поверхности кристалла, удалось повысить точность расчета K_{yck} ИБО.

Уточненный расчет K_{yck} повышает достоверность ИБО, поскольку позволяет получить более достоверные данные во время экспериментальной части ИБО, а затем экстраполировать их на срок активного существования изделия.

References

1. **GOST R 27.607—2013.** Nadezhnost' v Tekhnike. Upravlenie Nadezhnost'yu. Usloviya Provedeniya Ispytaniy na Bezotkaznost' i Statisticheskie Kriterii i Metody Otsenki Ikh Rezul'tatov. (in Russian).

2. **GOST R 57394—2017.** Mikroskhemy Integral'nye i Pribory Poluprovodnikovye. Metody Uskorennykh Ispytaniy na Bezotkaznost'. (in Russian).

3. Kulibaba A.Ya., Prishchepova S.P., Shtukarev A.Yu. Problemy Uskorennykh Ispytaniy Elektronnoy Komponentnoy Bazy na Nadezhnost'. Raketno-kosmicheskoe Priborostroenie i Informatsionnye Sistemy. 2014; 1;2:81—85. (in Russian).

4. Gorlov M.I., Emel'yanov V.A., Strogonov A.V. Gerontologiya Kremnievykh Integral'nykh Skhem. M.: Nauka, 2004. (in Russian).

5. Perrote A.I., Kartashov G.D., Tsvetaev K.R. Osnovy Uskorennykh Ispytaniy Radioelementov na Nadezhnost'. M.: Sov. Radio, 1968. (in Russian).

6. Bulaev I.Yu., Chistov A.S., Shtukarev A.Yu. Ispytaniya Elektronnoy Komponentnoy Bazy na Sokhraемость // Ракетно-космическое приборостроение и информационные системы. 2014. Т. 1. Вып. 2. С. 86—91.

7. **Гнеденко В.Б., Беляев Ю.К., Соловьев А.Д.** Математические методы в теории надежности. М.: Наука, 1965.

8. Failure Mechanisms and Models for Semiconductor Devices [Электрон. pecypc] www.jedec.org/standards-documents/docs/jep-122e (дата обращения 16.04.2021).

9. **C8051F120/1/2/3/4/5/6/7.** 8K ISP FLASH MCU Family. [Электрон. pecypc] www.silabs.com/documents/ public/data-sheets/C8051F12x-13x.pdf (дата обращения 16.04.2021).

10. NEC-Avio [Офиц. сайт] www.nec.infrared.ru (дата обращения 16.04.2021).

nyaemost'. Raketno-kosmicheskoe Priborostroenie i Informatsionnye Sistemy. 2014;1;2:86—91. (in Russian).

7. **Gnedenko V.B., Belyaev Yu.K., Solov'ev A.D.** Matematicheskie Metody v Teorii Nadezhnosti. M.: Nauka, 1965. (in Russian).

8. **Failure** Mechanisms and Models for Semiconductor Devices [Elektron. Resurs] www.jedec.org/standards-documents/docs/jep-122e (Data Obrashcheniya 16.04.2021).

9. C8051F120/1/2/3/4/5/6/7. 8K ISP FLASH MCU Family. [Elektron. Resurs] www.silabs.com/documents/ public/data-sheets/C8051F12x-13x.pdf (Data Obrashcheniya 16.04.2021).

10. **NEC-Avio** [Ofits. Sayt] www.nec.infrared.ru (Data Obrashcheniya 16.04.2021). (in Russian).

Сведения об авторах:

Кулибаба Андрей Ярославович — начальник отдела, Акционерное общество «Российские космические системы» Силин Алексей Сергеевич — инженер-исследователь 2-й категории, Акционерное общество «Российские космические системы», e-mail: silin.as@spacecorp.ru

Information about authors:

Kulibaba Andrey Ya. — Head of Department, Joint Stock Company «Russian Space Systems» Silin Aleksey S. — Research Engineer of the 2nd Category, Joint Stock Company «Russian Space Systems», e-mail: silin.as@spacecorp.ru

Конфликт интересов: авторы заявляют об отсутствии конфликта интересов Conflict of interests: the authors declare no conflict of interest

Статья поступила в редакцию: 18.05.2021 The article received to the editor: 18.05.2021