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Метод динамической классификации потоков данных  
с контролем области принятия решений
А.О. Гурина, Л.А. Гурина 

Рассмотрена задача динамической классификации, предполагающая изменения в классифицируемых данных с течением времени. 
Для потоков данных, таких как данные компьютерной сети, данные с датчиков, банковские транзакции и др., характерны пробле-
мы дрейфа, появления новых классов и аномалий. Изучены существующие методы классификации потоков данных. Отмечено, 
что единого и эффективного метода классификации, учитывающего одновременно проблемы обнаружения аномалий, дрейфа и 
адаптации модели к новым данным, нет. Установлена важность контроля области принятия решений классификаторов для качест-
венного решения задачи. Предложен метод динамической классификации на основе масштабируемого ансамбля автокодиров-
щиков с контролируемой с помощью критерия EDCAP областью принятия решений. Свойства автокодировщика использованы 
для решения проблем обнаружения дрейфа, аномалий и новых классов. Автокодировщики ансамбля обучены распознавать один 
класс. На основе критерия EDCAP проконтролирован размер области распознавания каждого автокодировщика. Результат класси-
фикации основан на анализе ответов всех участников ансамбля. При обнаружении данных нового класса ансамбль масштабирует-
ся путем добавления нового автокодировщика. При обнаружении дрейфа дообучаются лишь соответствующие автокодировщики. 
Выполнено сравнение качеств предлагаемого динамического классификатора и инкрементного алгоритма на основе адаптивного 
дерева Хёфдинга. Продемонстрированы преимущества предлагаемого метода на примере синтетического потока данных, вклю-
чающего дрейф, новый класс и аномалии.
Ключевые слова: динамическая классификация, дрейф концепта, обнаружение аномалий, автокодировщик, ансамбль, инкремент-
ное, онлайн- и машинное обучение, показатели качества классификации.
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A Data Stream Dynamic Classification Method with Control  
of the Decision-making Area

A.O. Gurina, L.A. Gurina
A dynamic classification problem in which a change with time in the data classified is assumed is considered. Data streams, such as computer 
network data, sensor data, bank transactions, etc., are characterized by problems of data drift, the emergence of new classes, and anomalies. 
The existing data streams classification methods are analyzed. It is pointed out that there is no a single and effective classification method 
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that would simultaneously take into account the problems of anomaly detection, drift, and model adaptation to new data. The importance 
of controlling the decision-making area of classifiers for obtaining a high-quality solution of the problem is noted. A dynamic classification 
method based on a scalable ensemble of autoencoders with a decision-making area controlled using the EDCAP criterion is proposed. The 
autoencoder properties are used to solve the problems of detecting drift, anomalies and new classes. The ensemble autoencoders were 
trained to recognize a single class. Based on the EDCAP criterion, the size of the recognition area of each autoencoder was controlled. 
The classification result is based on analyzing the responses of the ensemble's all autoencoders. When a new class of data is detected, the 
ensemble is scaled by adding a new autoencoder. When a drift is detected, only the corresponding autoencoders are retrained. The qualities 
of the proposed dynamic classifier and an incremental algorithm based on an adaptive Hoeffding tree are compared. The advantages of the 
proposed method are demonstrated on the example of a synthetic data stream that includes drift, a new class, and anomalies.
Key words: dynamic classification, concept drift, anomaly detection, autoencoder, ensemble, incremental online and machine learning, 
classification quality indicators.
For citation: Gurina A.O., Gurina L.A. A Data Stream Dynamic Classification Method with Control of the Decision-making Area. Bulletin 
of MPEI. 2023;1:120—135. (in Russian). DOI: 10.24160/1993-6982-2023-1-120-135.

Введение

Термин «динамическая классификация» в разных 
источниках трактуют по-разному. Изначально динами-
ческую классификацию упоминали в контексте изме-
нений в классифицируемых данных с течением време-
ни, называемых концептуальным дрейфом. 

Впервые проблема дрейфа, как изменения распре-
деления классифицируемых данных, была обнаружена 
в реальной практической задаче М. Кубатом в 1992 г.  
[1 — 3]. Дрейф относят как к входным данным [4], так 
и к целевой функции, которую модель обучена пред-
сказывать. 

В зависимости от скорости изменения концепций 
известно несколько типов дрейфа [4, 5]:

● постепенный;
● периодический или циклический;
● внезапный или резкий.
Заметим, что, если периодический дрейф проходит 

постепенным образом, его также можно отнести к ка-
тегории постепенного. При этом в случае резкого дрей-
фа задача сопоставления резко дрейфующего класса с 
исходным без участия эксперта является нетривиаль-
ной. В таком случае решением проблемы может стать 
отнесение резко дрейфующего класса к новому классу.

В настоящей работе под динамической классифика-
цией понимается классификация, предусматривающая 
не только известные в настоящее время классы объек-
тов (статическая классификация), но и их возможное 
развитие в будущем, будь то постепенные изменения 
признаков классифицируемых объектов (постепенный 
дрейф входных данных) или количества классов объ-
ектов (появление нового класса или резкий дрейф из-
вестного класса). 

В настоящее время динамическая классифика- 
ция  чрезвычайно актуальна [6, 7], например, для при-
ложений электронной коммерции, почтовых систем, 
социальных и компьютерных сетей, оборудования, 
обнаружения мошенничества и других, в которых ге-
нерируется огромное количество непрерывных и бес-
конечных данных, называемых потоком. Реализация 
необходимого управления и классификации наблю-
дений в потоке осложнена характерной проблемой 
дрейфа, приводящей к снижению производительности 
классификационной модели. 

Большинство технических и информационных си-
стем — многорежимны, и дрейф возникает из-за по-
степенного износа, либо накопления незначительных 
изменений, что остается незаметным на протяжении 
длительного времени. Тем не менее, процессы изме-
нения режимов и характеристик функционирования 
в некоторых случаях могут быть значительными, на-
пример, в случае модернизации системы. Также на 
режимы работы технических систем влияют внешние 
возмущающие факторы. В информационных системах 
дрейф характеристик может быть обусловлен вмеша-
тельством человека-оператора, ошибками в реализа-
ции систем, изменением конфигурации программного 
и аппаратного обеспечения, а также деструктивными 
действиями вредоносных программ. 

Другая проблема классификации потоков данных 
заключается в том, что обучающая выборка имеет 
ограниченный размер, и некоторые образы известных 
классов могут в неё не попасть. Кроме того, динамика 
характерна для задач обнаружения новизны, аномалий 
и одноклассовой классификации, поскольку понятие 
нормального поведения развивается, и текущее поня-
тие такого поведения может быть недостаточно репре-
зентативным в будущем. Для корректного разрешения 
данной ситуации метод динамической классификации 
должен корректно опознавать такие образы и включать 
их в обучающую выборку для уточнения классифика-
тора. 

При обработке потока данных следует учитывать 
возможность аномалий, которые могут возникать в 
системе из-за кибератак, сбоев оборудования, ошибок  
и т. д. Во многих прикладных задачах крайне важно не 
допустить пропуска таких аномалий и отнесения их к 
целевому классу.

Разработка классификаторов для систем с изменя-
ющимися характеристиками представляется сложной 
задачей, метод решения которой должен обладать как 
минимум следующими свойствами:

● динамической адаптацией алгоритма и области 
принятия решений к новым данным;

● обнаружением аномалий.
Поскольку результаты классификации часто служат 

для мониторинга, управления или принятия решений, 
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то метод эффективной классификации в динамических 
условиях может существенно повысить уровень ав-
томатизации и качество решения целевой задачи, что 
имеет большое практическое значение.

Обзор литературы

Решением задач классификации в условиях дрейфа 
ещё с 1990-х гг. занимались такие исследователи, как 
М. Кубат [1], Г. Уидмер [3], Г. Нахаизаде [8], А. Цымбал 
[9], А.В. Жуков [10], Д.Н. Сидоров [10], В.А. Гимаров 
[11] и другие.

В настоящее время для решения задач динамичес-
кой классификации используют адаптированные и спе-
циально разработанные методы машинного обучения. 
Адаптированные подходы [10, 12] расширяют возмож-
ности традиционных статических методов машин-
ного обучения и включают механизмы обнаружения 
дрейфа. Чаще всего, чтобы обнаружить дрейф любого 
типа, контролируют текущую точность модели. Если 
точность уменьшается, то это означает, что модель 
становится неактуальной и нуждается в обновлении  
[13 — 15]. Также можно контролировать изменения в 
статистических свойствах самих данных [16, 17], в том 
числе, находить изменения в данных непараметричес-
кими методами [18]. В [19] предложено использовать 
вариант метода кумулятивных сумм (исходно — ме-
тод обнаружения разладки) для обнаружения дрейфа. 
Перспективным инструментом поиска разных типов 
дрейфа считается одноклассовый классификатор, на-
пример, автокодировщик.

Автокодировщик, обученный должным образом на 
одной части потока данных, может быть использован 
для отслеживания возможных изменений в распределе-
нии данных в последующем потоке. Изменения анали-
зируют путем мониторинга изменений ошибки рекон-
струкции. Кроме того, экспериментальные результаты 
показывают, что детектор на основе автокодировщика 
способен обрабатывать различные типы дрейфа [20].

Обычно, после того, как дрейф обнаружен, класси-
фикатор переобучается на текущих данных в предпо-
ложении, что они лучше описывают актуальное рас-
пределение данных. 

Известны подходы, в которых механизм адаптации 
к дрейфу встроен в сам алгоритм классификации по-
тока данных. Их делят на три основные группы: под-
ходы, основанные на инкрементном обучении [21, 22], 
подходы, основанные на скользящем окне [23], и ан-
самблевые методы [24 — 26]. 

Анализ литературы показал, что наиболее эффек-
тивные методы решения проблемы дрейфа — ансам-
блевые методы и инкрементное обучение моделей  
[27, 28]. Рассмотрим их чуть подробнее.

В подходах, основанных на инкрементном обуче-
нии, процесс обучения происходит всякий раз, когда 
появляются новые примеры. Методы, включающие та-
кую стратегию обучения, позволяют адаптировать гра-

ницу принятия решения классификатора к изменениям 
во входящих данных.

Наиболее популярным методом классификации с 
обучением на потоке данных в реальном времени яв-
ляется адаптивное дерево Хёффдинга, учитывающее 
дрейф в данных (Hoeffding Adaptive Tree Classifier) 
[29]. Адаптивное дерево Хёффдинга [30] использует 
адаптивные окна (ADWIN) [23] для мониторинга про-
изводительности ветвей в дереве и замены их новыми 
ветвями при снижении точности, если точность новых 
ветвей выше.

Отмечается, что многие известные алгоритмы 
классификации можно адаптировать благодаря инкре-
ментному обучению. Так, в [22] использован модифи-
цированный метод взвешенного SVM одного класса, 
дополненный принципами инкрементного обучения 
и забывания. Свойства одноклассовой классификации 
могут служить для решения проблем дисбаланса клас-
сов и обнаружения дрейфа, поэтому одноклассовая 
классификация с инкрементным обучением является 
перспективным направлением исследований в области 
классификации потоков данных с дрейфом [22, 31]. 

Основной недостаток подобных подходов — риск 
обучения на аномалиях, вероятность появления ко-
торых высока во многих реальных средах (промыш-
ленность, компьютерные системы и сети, банковские 
транзакции и т. д.). 

Кроме того, для инкрементного обучения характер-
но постепенное забывание старых данных, так называ-
емая проблема катастрофического забывания. Авторы 
[32] в своей работе 2018 г. продемонстрировали, что 
проблема катастрофического забывания в парадиг-
ме инкрементного обучения не была решена. Такая 
особенность может привести к некорректной класси-
фикации при появлении в потоке исходных данных из-
вестного класса. Смягчить данную проблему можно, ис-
пользуя ансамбль базовых классификаторов и добавляя 
новый классификатор для хранения новых знаний [33].

Наиболее популярный развивающийся метод обра-
ботки дрейфа концепций в потоках данных — использо-
вание ансамбля классификаторов. Для принятия реше-
ния в таком подходе результаты классификации базовых 
участников ансамбля анализируются и объединяются 
для определения окончательного результата классифи-
кации. Способ объединения часто называют правилами 
слияния. Они чаще всего основаны на стратегии взве-
шивания или подсчете результатов базовых классифи-
каторов. Примером может служить гетерогенный адап-
тивный ансамблевый классификатор с динамической 
схемой взвешивания, основанной на разнообразии его 
базовых классификаторов [25]. Данная модель ансамбля 
с адаптацией включает такие базовые классификаторы 
как наивный Байес, k-NN, деревья решений. 

Известны отдельные способы решения указанных 
проблем динамической классификации: классифика-
тор с адаптацией к новым данным с дрейфом MLAW 
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[24] и классификатор потоковых данных с дрейфом на 
основе Micro-Cluster Nearest Neighbour (MC-NN) [34].

Для борьбы с проблемой дрейфа применяют прин-
цип динамического обучения ансамбля [35], заклю-
чающийся в разделении большого потока данных на 
небольшие блоки и независимом обучении классифи-
каторов на отдельных блоках. Считается, что большой 
блок данных более надежен, в то время как небольшой 
блок лучше адаптируется к изменению данных. Подоб-
ная декомпозиция приводит к упрощению архитектур, 
сокращению времени обучения и повышению произ-
водительности и обобщающих свойств [33]. 

В [5] проанализированы модели динамического 
ансамблевого обучения, отмечена их способность ра-
ботать как с неограниченно растущими объемами дан-
ных, так и с проблемами дрейфа концепций при интел-
лектуальном анализе потоков данных. 

Сравнение инкрементного обучения и ансамблево-
го обучения с точки зрения эффективности решения 
проблемы дрейфа показало, что ансамблевый подход 
более стабилен и позволяет лучше адаптироваться к 
дрейфу [5]. 

Известны подходы, объединяющие обе стратегии 
[36, 37]. Например, в работе [36] 2021 г. для адаптации 
к проблеме дрейфа, как постепенного, так и внезапно-
го, в потоковых данных предложен инкрементный ан-
самбль одноклассовых классификаторов. Модель оце-
нивается с использованием реальных наборов данных 
и демонстрирует точность более 80%.

К недостаткам ансамблевого подхода следует от-
нести:

● проблему выбора набора разнообразных базовых 
классификаторов; 

● проблему выбора размера блока данных, влияю-
щего на производительность алгоритма;

● проблему выбора весовых значений для различ-
ных классификаторов ансамбля, напрямую влияющих 
на точность классификации; 

● необходимость заново обучать весь ансамбль при 
появлении новых данных;

● проблему определения и исключения устаревших 
данных.

Многообразие существующих подходов динами-
ческой классификации не позволяет выявить однознач-
но лучший, поскольку каждый из них имеет различные 
достоинства и недостатки.

Отметим общий недостаток многих классифи-
каторов — после обучения они делят пространство 
признаков на открытые области классов, что делает 
возможным отнесение аномалий к целевому клас-
су. Разработка метода классификации, позволяющего 
строить компактные области классов, а также наличие 
показателей качества, оценивающих соответствие об-
ластей принятия решений и целевых классов, мини-
мизировала бы риск неправильной классификации за 
пределами обучающей выборки.

Для решения обозначенных проблем наиболее це-
лесообразно и перспективно применение ансамбля, 
включающего нейросетевые автокодировщики для 
детектирования дрейфа, новых классов и аномалий. В 
[38] предложен способ динамической классификации 
на основе масштабируемого ансамбля автокодиров-
щиков, формирующий компактные области принятия 
решений в пространстве признаков, а также позволяю-
щий управлять их величиной для точной классифика-
ции и выявления аномалий. Такой способ совместно с 
критерием качества EDCAP [39, 40] позволяет строить 
классификаторы, близкие к идеальным даже в про-
странстве высокой размерности, когда визуализация 
областей принятия решений затруднена.

Рассмотрим методологию динамической класси-
фикации на основе масштабируемого ансамбля авто-
кодировщиков с контролируемой с помощью критерия 
EDCAP областью принятия решений.

Описание метода динамической классификации

Метод динамической классификации является рас-
ширением метода статической классификации [40] для 
обеспечения возможности классификации в условиях 
появления дрейфа, новых классов, аномалий, а также 
адаптации классификатора к новым данным.

В основе метода лежит ансамбль нейросетевых ав-
токодировщиков, каждый из которых позволяет оцени-
вать близость входных образов к известным классам и 
применяется в качестве детектора дрейфа, данных но-
вых классов и аномалий.

Автокодировщик — многослойная нейронная сеть 
прямого распространения со специальной архитекту-
рой в форме бабочки (рис. 1): входной и выходной слои 
должны иметь одинаковый, а промежуточный слой или 
слои — меньший размеры. 

Автокодировщик обучается с помощью обратного 
распространения ошибки с тем, чтобы на выходе вос-
производить те же данные, что и на входе. Такая осо-
бенность позволяет условно разделить его архитектуру 
на кодер и декодер. На этапе обучения автокодировщи-
ка и по мере снижения размерности промежуточных 
слоёв кодера выявляется избыточность в поступающих 
на вход данных. В самом «узком» слое кодера обеспе-
чивается сжатие данных до главных закономерностей, 
из которых в декодере по мере повышения размер- 
ности следующих промежуточных слоёв восстанавли-
вается входной пример на выходном слое. 

Восстановленные на выходном слое автокодиров-
щика данные называют реконструкцией, а ошибку 
восстановления — ошибкой реконструкции. Обучение 
прекращается тогда, когда автокодировщик восста-
навливает примеры обучающей выборки на выходном 
слое с требуемой минимальной ошибкой.

Применимость автокодировщика для обнаружения 
аномалий, новизны, дрейфа многократно подтвержде-
на [20, 38, 41].
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В предлагаемом способе автокодировщик исполь-
зуется для оценки близости поданных на вход приме-
ров к обучающим данным XT следующим образом. 

Обучение автокодировщика на обучающем мно-
жестве XT проходит по критерию минимизации ошиб-
ки реконструкции:

� � � �, : min .
T

T
x X

Training AE X RE x
�

��

Результатом работы автокодировщика AE над вход-
ным примером x является восстановленный пример x~. 
Степень близости входного примера x(x1, x2, …, x, …, xn) 
к обучающим данным определяется величиной ошиб-
ки реконструкции RE(x), рассчитываемой по формуле

� � � � � �2

1
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n

j j
j

RE x x x x AE x
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Чем ближе RE(x) к нулю, тем точнее автокодиров-
щик восстанавливает входной вектор, и тем достовер-
нее гипотеза о том, что входной вектор принадлежит 
целевому классу. Для обнаружения какой-либо новиз-
ны в данных устанавливается пороговое значение REth 
как максимальное значение среди ошибок реконструк-
ции, рассчитанных для примеров обучающего набора:

� �max .
T

th x X
RE RE x

�
�                         (1)

Пороговое значение ошибки реконструкции можно 
интерпретировать как границу класса в пространстве 
признаков. Величина ошибки реконструкции RE(x)   
рассматривается как метрика близости примера x к 
границе класса, определяемой RE(x) ≤ REth. Таким об-
разом, если RE(x) > REth, то пример находится за гра-
ницей класса. 

Задание порога ошибки реконструкции REth позво-
ляет построить решающее правило одноклассового 
классификатора:

� �
� �
� �

1 0,  
1,  

;
.
th

th

RE x RE
CL x
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В задаче динамической классификации важно раз-
личать два случая: входной пример располагается вбли-
зи внешних границ класса или далеко от неё. Из общих 
соображений следует, что появление новых примеров 
вблизи внешней границы класса с течением времени 
может указывать на постепенный дрейф класса. В та-
ком случае имеет смысл дообучить автокодировщик с 
учетом вновь поступивших примеров с включением 
вновь полученных выборок в обучающий набор.

При этом появление нового примера, находящегося на 
значительном удалении от границы класса (RE(x) >> REth), 
означает появление нового класса или аномалии. В та-
ких случаях дообучение данного автокодировщика не 
требуется.

Чтобы отличить дрейф данных от других случаев 
классификации, вводится коэффициент пропорцио-
нального расширения границы kdrift. Он должен быть 
положительным числом больше единицы и может быть 
выбран эмпирически. Тогда значение kdrift∙REth опреде-
ляет допустимую для дрейфа данных дополнительную 
границу класса. Следует отметить, что форма внешней 
границы области дрейфа может быть более сложной, 
чем простое расширение границы класса в простран-
стве признаков объекта.

Таким образом, используя один автокодировщик, 
обученный на примерах определенного класса, а также 
значения REth и kdrift в зависимости от значения RE(x),   
можно определить вновь поступающий пример x как 
пример:

● целевого класса;
● целевого класса с дрейфом;
● нового класса или аномалии.
На рисунке 2 продемонстрировано применение вве-

денной логики для таких случаев. 
В таблице 1 отражено формальное описание усло-

вий, соответствующих результатов классификации и 
вид адаптации классификатора.

Различить случаи нового класса и аномалии можно 
с помощью дополнительного коэффициента расшире-
ния границы класса kanom. 

В случае одноклассовой классификации пример X3 
является аномалией, если ошибка реконструкции при-

Рис. 1. Пример архитектуры автокодировщика
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мера REX3 находится выше некоторой границы, кото-
рая может быть определена как kanom∙REth. Значение kanom 
выбирается таким, чтобы значение  kanom∙REth устанав-
ливало границу, за пределами которой в пространстве 
признаков могут быть только аномалии. Подобрать 
kanom можно, исходя из предельно допустимых значений 
признаков классифицируемых объектов и критерия 
оценки области принятия решений EDCAP. Таким об-
разом, если REX3 > kanom∙REth, то данный пример класси-
фицируется как аномалия. 

Можно рассматривать kdrift = kanom для поиска анома-
лий за границами допустимой области дрейфа целево-
го класса. Однако в некоторых задачах динамической 
классификации необходимо отличать случай нового 
класса от существенных аномалий. 

В большинстве приложений ошибка реконструкции 
примера нового класса RE(x) превысит kdrift∙REth, но не 
будет также велика, как в случае с аномалиями. Тогда, 
если kanom∙REth < REX3 ≤ kanom∙REth, то с большой вероят-
ностью пример X3 будет представителем нового класса.

Случай обнаружения аномалии требует только со-
ответствующего результата классификации и свое-
временного информирования. При этом случай опре-
деления нового класса требует масштабируемости 
классификатора, заключающейся в синтезе и обучении 
новых автокодировщиков и объединении всех автоко-
дировщиков в ансамбль. 

Рассмотрим подход, расширенный на случай двух и бо-
лее классов с применением ансамбля автокодировщиков. 

Пусть даны M классов, заданные в векторном про-
странстве X ⊆ Rn и описанные множествами примеров 
обучающей выборки:

� � ,   1 . ,i
TX X i M� �

Для удобства введем обозначение множества обуча-
ющих примеров всех классов:
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Пусть существуют также тестовые множества для 

каждого из классов:
� � ,    1 .,i
TestX X i M� �

Для решения задачи динамической бинарной и мно-
гоклассовой классификации (далее — классификации) 
с обнаружением аномалий использован масштабиру-
емый ансамбль автокодировщиков с рассмотренной 
выше логикой обнаружения целевого класса, дрейфа, 
новых классов и аномалий.

Пусть обучающая выборка состоит из примеров M 
известных классов: C1, C2, …, CM. Тогда требуется по-
строение ансамбля из M + 1 автокодировщиков, при-
чем каждый из M автокодировщиков AE1, AE2, …, AEM 
обучается распознавать примеры одного из известных 
классов C1, C2, …, CM. Кроме того, синтезируется и 
включается в ансамбль общий автокодировщик AE0, 
обучающийся на всех примерах обучающей выборки 
XT

0. Для обученных автокодировщиков определяют по-
роговые значения REthi

, где i = 0, 1, …, M по (1). 
Установленные таким образом пороговые значения 

ошибки реконструкции для каждого автокодировщика 
позволяют очертить в пространстве признаков M гра-
ницы областей известных классов C1, C2, …, CM, а так-
же область C0, охватывающую все известные классы 
(рис. 3).

Для обнаружения дрейфа в данных требуется за-
дать коэффициент kdrift, который, в общем случае, мо-
жет быть подобран для каждого класса. Для простоты 
описания метода использован один и тот же kdrift для 
всех классов. С помощью значения kdrift∙REthi

 отслежи-
вается дрейф данных каждого Ci класса, что позволяет 
верно классифицировать входные данные, а также сво-
евременно переобучать соответствующий AEi автоко-
дировщик,  где i = 0, 1, …, M. Дообучение происходит в 
момент, когда дрейфующих данных поступает больше 
половины имеющегося обучающего набора. Если же 
дрейф класса выходит за границу области известных 
классов, характеризующуюся REth0, то также требуется 
дообучение AE0 с учётом новых данных. В общем слу-
чае, правила для дообучения автокодировщиков долж-
ны определяться для предметной области.

Если классы в пространстве признаков расположены 
близко друг к другу, как на рис. 3, то возможен случай, 
когда входной пример оказывается в области допус-
тимого дрейфа для нескольких классов (i = k1, k2, …)  
одновременно, т. е. ошибка реконструкции входно-
го примера RE(x) не превышает пороговых значений 
kdrift∙REth, установленных для нескольких автокодиров-
щиков (AE(i)). В таком случае входной пример будет 

Рис. 2. Детектирование случаев классификации с использо-
ванием одного автокодировщика: 

— — REth; ‑ ‑ ‑ ‑ — kdrift∙RЕth

Таблица 1

Детектирование случаев классификации с исполь-
зованием одного автокодировщика

Условие Результат Адаптация
REX1 ≤ REth Целевой класс Не требуется

REth < REX2 ≤  
≤ kdrift∙REth

Целевой класс  
с дрейфом Дообучение

REX3 > kdrift∙REth
Новый класс/ 

аномалия
Масштабирование/
информирование
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отнесен к тому классу kj, для которого значение RE(x)  
относительно порога минимально согласно формуле

� � � �

1 2, ,
arg min  .i i

j thi k k
k RE RE

� �
�

В рассмотренных ранее случаях предполагалось, 
что известные классы могут расширяться. Стоит про-
анализировать случай, когда детектируются постепен-
ный, периодический или внезапный дрейфы класса, 
тогда с течением времени некоторые данные, на кото-
рых автокодировщик был обучен изначально, станут 
неактуальны для данного класса и должны быть забы-
ты. Это решается полным переобучением автокодиров-
щика, когда необходимый объем актуальных обучаю-
щих данных будет собран.

Рассмотрим случай, когда новый пример не рас-
познается ни одним из участников ансамбля, тогда, для 
различия случаев появления нового класса или ано-
малии, используется пороговый критерий kanom∙REth0. 
Если ошибка реконструкции RE для нового примера 
не превышает значение kanom∙REth0, то данный пример 
классифицируют как пример нового класса. В этом 
случае следует создать и обучить новый автокодиров-
щик AEM+1, а также переобучить AE0 с учетом приме-
ров нового класса. Если ошибка реконструкции RE для 

нового примера превышает kanom∙REth0, то этот пример 
классифицируют как аномалию. В случае обнаружения 
аномалии рекомендуется сгенерировать сигнал трево-
ги. Для множества предметных областей это имеет 
критически важное значение.

Возможные случаи классификации продемонстри-
рованы на рис. 3 и формально описаны с помощью ус-
ловий в табл. 2.

Отметим, что метод также включает оценку качест-
ва и оптимизацию областей принятия решений каж-
дого участника ансамбля в соответствии с критерием 
EDCAP. Ансамбль автокодировщиков готов к исполь-
зованию только тогда, когда каждый участник ансамб-
ля по критерию EDCAP соответствует требуемому для 
конкретной задачи уровню качества и устойчивости к 
ошибкам классификации, которые могут быть вызваны 
аномалиями или состязательными атаками. 

Таким образом, ансамблем автокодировщиков в 
настоящей работе называется комбинация автокоди-
ровщиков, каждый из которых обучен распознавать 
примеры одного из целевых классов, за исключением 
общего автокодировщика, обученного распознавать 
близость примера к области целевых классов. Резуль-
тат классификации ансамблем определяется на осно-
вании анализа ответов каждого участника ансамбля 

Рис. 3. Детектирование случаев классификации с использованием ансамбля автокодировщиков

Таблица 2

Детектирование случаев классификации с использованием ансамбля автокодировщиков

Условие Результат Адаптация
REX1 ≤ REth(1|2|…M) Целевой класс Не требуется

REth(1|2|…M) < REX2a ≤ kdrift∙REth(1|2|…M), REX2a ≤ REth0 Целевой класс 
с дрейфом

Дообучение AE(1|2|…M)

REth(1|2|…M) < REX2b ≤ kdrift∙REth(1|2|…M), REth0 < REX2b ≤ kanom∙REth0 Дообучение AE(1|2|…M) и AE0

REX3  > kdrift∙REth(1|2|…M), REth0 < REX3 ≤ kanom∙REth0 Новый класс Синтез AEM+1, дообучение AE0

REX4 > kanom∙REth0 Аномалия Информирование
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согласно установленным правилам принятия решения. 
Масштабирование ансамбля, т. е. синтез новых автоко-
дировщиков и включение их в ансамбль, происходит 
автоматически при обнаружении достаточного коли-
чества примеров нового класса.

Метод динамической классификации на осно-
ве масштабируемого ансамбля автокодировщиков с 
контролируемой с помощью критерия EDCAP обла-
стью принятия решений, названного SEAEs (Scalable 
Ensemble Of AutoEncoders), опубликован в [38].

Опишем предлагаемый метод динамической клас-
сификации на основе SEAEs в виде алгоритма.

Пусть обучающие XT
(i) и тестовые XTest данные 

прошли необходимые процедуры предобработки и 
нормализации.

Разработаем классификатор SEAEs(x), который бы 
для любого x ∈ X сообщал метку класса i, если x по-
хож на примеры из XT

(i), или 0 — если x не похож ни 
на один из классов, или M + 1 — если x представляет 
собой новый класс.

Процедура синтеза классификатора SEAEs(x):
1. Задание архитектуры � �0 , , 1,iAE AE i M� .
2. Обучение нейросетевых автокодировщиков:

a. Обучение Training{AE0, XT
0}.

b. Обучение Training � � � �� �, ,   1,i i
TAE X i M� .

3. Расчет величин, определяющих принятие реше-
ний:

a. Расчет порога для одноклассового классифи-
катора CL0(x) на основе AE0.
b. Расчет порогов � �

� �

� � � �max
i
T

i i
th

x X
RE RE x

�
�  для одно-

классовых классификаторов CL(i)(x) на основе 
� � , 1,iAE i M� .

c. Выбор kdrift и расчет порогов обнаружения 
дрейфа kdrift∙REth

(i), kdrift∙RE0
th.

d. Выбор kanom и расчет порогов обнаружения 
аномалий kanom∙REth

(i), kanom∙RE0
th.

4. Расчет характеристик качества полученного 
классификатора с детализацией по классам:

a. По критерию EDCAP: Excess(i), Deficit(i), 
Coating(i), Approx(i), Pref (i), 1,i M� .
b. По тестовому множеству XTest: Precision, Recall, 
Fscore.

5. Анализ характеристик качества классификации 
отдельных автокодировщиков � �0 , ,  1,iAE AE i M� , кор-
ректировка их архитектуры, параметров обучения и 
повторение шагов 2 — 4 до получения необходимого 
уровня качества.

Для компактного изложения алгоритма обозначим 
� �� �1,

min i
thi M

RE
�

 как REth
min, а � �� �

1,
max i

thi M
RE

�
 как REth

max. Приведем 
алгоритм функционирования масштабируемого ан- 
самбля автокодировщиков SEAEs(x), реализующего ме-
тод динамической классификации.

1. Если CL0(x) = 0, то пример x находится за границей 
области известных классов и классифицируется как:

a. аномалия, если RE(x)> kanom∙REth
min.

b. новый класс, если kdrift∙REth
min < RE(x) ≤ kanom∙REth

min.
c. целевой класс i с дрейфом, если RE ith < RE(x) ≤ 
≤ kdrift∙RE ith, причем, если есть несколько таких i, 
то выбирается тот, у которого RE(x)/RE ith мини-
мально.
d. целевой класс i, если RE(x) ≤ RE ith, причем, 
если есть несколько таких i, то выбирается тот, у 
которого RE ith /RE(x) максимально.

2. Иначе если CL0(x) = 1, то пример x принадлежит 
области известных классов и классифицируется как:

a. целевой класс i, если RE(x) ≤ RE ith, причем, 
если есть несколько таких i, то выбирается тот, у 
которого RE ith /RE(x) максимально.
b. целевой класс i с дрейфом, если RE ith < RE(x) ≤ 
≤ kdrift∙RE ith, причем, если есть несколько таких i, 
то выбирается тот, у которого RE(x)/RE ith мини-
мально.
c. новый класс, если kdrift∙REth

max < RE(x) ≤ kanom∙REth
max.

3. Если количество примеров нового класса X (M+1) 
больше, чем половина примеров одного из классов XT

i ,    
то дообучается общий автокодировщик AE0 и синтези-
руется и добавляется в ансамбль новый автокодиров-
щик AE (M+1) .

4. Если обнаружено достаточное количество при-
меров дрейфующего класса i для дообучения, то дообу-
чается автокодировщик AE i и общий автокодировщик 
AE 0.

Для решения проблем аномалий в данном методе 
для каждого участника ансамбля оценивается и кор-
ректируется область принятия решения, создаваемая 
им после обучения. Кроме того, метод включает стра-
тегии обнаружения дрейфа, новых классов и аномалий 
с помощью свойств автокодировщиков и адаптации 
классификатора к новым данным.

Реализованное в алгоритме частичное дообучение 
участников ансамбля на актуальных данных позволяет 
быстрее адаптировать границу классов классификато-
ра к новым данным. Предусмотренные в методе пра-
вила обнаружения примеров новых классов позволяют 
определять примеры классов, неизвестных из обучаю-
щей выборки. Тем не менее, при поиске новых классов 
желательна верификация результатов экспертом.

Таким образом, в предлагаемый метод интегриро-
ваны:

● оценка качества обученных моделей ансамбля по 
критерию EDCAP;

● механизмы обнаружения дрейфа, новых классов и 
аномалий с использованием свойств автокодировщиков;

● механизм адаптации классификатора к новым 
данным, включая масштабирование в случае появле-
ния новых классов и частичное дообучение — в случае 
новых классов и дрейфа данных.

Отметим, что дополнительно в методе может быть 
использован способ борьбы с проблемой отравления 
обучающих данных [42].



СИСТЕМНЫЙ АНАЛИЗ, УПРАВЛЕНИЕ И ОБРАБОТКА ИНФОРМАЦИИ,  
СТАТИСТИКА (ТЕХНИЧЕСКИЕ НАУКИ)128

Вестник МЭИ. № 1. 2023         ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И ТЕЛЕКОММУНИКАЦИИ

Предполагается, что разработанный метод сделает 
возможной достоверную классификацию потоков дан-
ных, расширив сферу применения нейросетевых клас-
сификаторов на сложные задачи, касающиеся, напри-
мер, интеллектуальных систем поддержки принятия 
решений в технической диагностике или обнаружении 
компьютерных атак.

Для более подробного изучения свойств предло-
женного метода проведена экспериментальная апро-
бация на синтетических двумерных данных, позво-
ляющих визуализировать исходные данные и область 
принятия решений классификаторов.

Экспериментальная апробация SEAEs

Рассмотрим результаты, полученные при апроба-
ции предлагаемого метода динамической классифика-
ции с контролируемой по EDCAP областью принятия 
решения (SEAEs) на примере синтетических данных, 
включающих дрейф, новые классы и аномалии, а так-
же результаты сравнения SEAEs с инкрементным ал-
горитмом на основе адаптивного дерева Хёффдинга 
(Hoeffding Adaptive Tree Classifier, HAT). Динамичес-
кий классификатор SEAEs реализован с помощью 
библиотеки keras, а HAT — с помощью библиотеки 
skmultiflow [43].

В первый момент времени обучающие данные со-
держат данные только двух классов. Количество обуча-
ющих примеров D = 400. Два тестовых набора T1 и T2 
построены таким образом, что дрейф данных происхо-
дит после обработки 400 примеров данных. Тестовый 
набор данных T1 дополнительно включает примеры 
нового класса. В тестовый набор данных T2 дополни-
тельно входят примеры аномалий. 

В начальный момент времени ансамбль SEAEs со-
стоял из трех автокодировщиков: AE1, AE2, AE0. В экспе-
риментах для всех участников ансамбля использована 
типовая архитектура NN2,3,7,4,7,3,2 и параметры обучения 
4∙104 эпох с помощью алгоритма обучения ADAM со 
скоростью обучения равной η = 0,01. Для реализации 
классификатора SEAEs параметры kdrift и kanom уста-
новлены на 15 и 100 при среднем уровне порога ошиб-
ки реконструкции, равном 0,05.

В первом эксперименте ансамбль SEAEs и HAT обу-
чаются только на первых 400-х примерах данных. По-
скольку рассматривается случай не пересекающихся 
классов, чтобы оценить качество обученного SEAEs, 
для каждого автокодировщика ансамбля были рассчи-
таны значения только четырех из пяти показателей ка-
чества: Excess, Deficit, Coating, Approx (табл. 3). Также 
для удобства сравнения в табл. 3 приведены интеграль-
ные значения оценки для SEAEs, HAT и эталонные зна-
чения критерия EDCAP.

Сравнение полученных значений для SEAEs с кри-
терием EDCAP позволили убедиться, что в простран-
стве признаков нет больших областей, которые могут 
включать в себя аномалии. После успешной проверки 

ансамбль SEAEs может быть использован для класси-
фикации новых данных.

Высокое значение показателя Excess и низкое зна-
чение Approx говорит о том, что модель HAT имеет от-
крытые области принятия решений и уязвима для про-
пуска аномалий.

Протестируем обученные классификаторы на те-
стовом наборе данных T1, визуализируем области при-
нятия решений, а также результаты классификации 
исследуемых классификаторов SEAEs (рис. 4) и HAT 
(рис. 5). 

Примеры обучающего набора, а также границы 
классов, построенные автокодировщиками в простран-
стве признаков, даны на рис. 4, а. На рисунке 4, б про-
демонстрирован результат классификации тестового 

Таблица 3

Результаты оценки качества классификаторов по 
критерию EDCAP

Классификатор
Показатели качества

Excess Deficit Coating Approx
SEAEs 1,240 0,00 1,00 0,57
HAT 17,60 0,00 1,00 0,08

Критерий EDCAP 0,000 0,00 1,00 1,00

Рис. 4. Результат обучения (а) и классификации тестового на-
бора T1 (б) с использованием SEAEs

a

б
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набора T1 с использованием классификатора SEAEs. 
Ошибки классификации выделены зеленым цветом. 
Видно, что ансамбль SEAEs с высокой точностью клас-
сифицировал дрейфующие данные класса 2 (cl.2) и 
данные нового класса (cl.3), которого не было в обу-
чающей выборке. 

Рассмотрим аналогичные результаты для класси-
фикатора HAT.

Из данных рис. 5, а следует, что область принятия 
решений, построенная в пространстве признаков обу-
ченным классификатором HAT, сильно отличается от 
областей обучающих данных: области классов не ком-
пактны, и аномалии, далеко отстоящие от примеров 
обучающей выборки, отнесены классификатором к 
целевому классу. В данном случае визуальный анализ 
подтверждает вывод, сделанный по рассчитанным ха-
рактеристикам EDCAP. На рисунке 5, б показан резуль-
тат HAT при классификации тестового набора T1. Вид-
но, что при использовании данного классификатора 
новый класс или, например, резкий дрейф класса был 
бы некорректно распознан. 

Качество классификации изучаемых классификато-
ров подтверждается традиционными характеристика-
ми качества (см. табл. 4).

Рассчитанные значения традиционных характерис-
тик качества показывают, что данная модель SEAEs 
превосходит инкрементный алгоритм HAT. 

После того, как было собрано достаточное коли- 
чество примеров новых данных, среди которых не было 
обнаружено аномалий, классификатор был дообучен. 
Пул классификаторов ансамбля SEAEs расширился за 
счет нового автокодировщика AE3 для распознавания 
нового класса (cl.3). На обучающих данных класса 3 
синтезирован и оценен новый автокодировщик той 
же архитектуры. Обучающая выборка для дообучения 
общего автокодировщика AE0 состояла из актуальных 
данных, включая исходные, а также дрейф класса 2 и 
новый класс 3. 

Инкрементный алгоритм HAT также был дообучен 
на том же наборе актуальных данных. После адапта-
ции качество исследуемых классификаторов оценива-
ли по критерию EDCAP (см. табл. 5).

Значения показателей для SEAEs демонстрируют, 
что область принятия решений незначительно увели-
чилась, что объясняется появлением области для опре-
деления нового класса и большим разнообразием в 
виду дрейфа данных. Для алгоритма HAT область при-
нятия решений после дообучения стала более компакт-
ной, однако стала гораздо более уязвимой к аномалиям 
по сравнению с моделью SEAEs. 

Покажем, как изменились области принятия ре-
шений и качество классификации тестового набора 
Т2 после дообучения исследуемых классификаторов  
(рис. 6, 7).

Выводы, сделанные по анализу значений показате-
лей качества EDCAP, хорошо согласуются и подтверж-

дены визуально (см. рис. 6, а, б). На рисунке 6, б пока-
заны результаты классификации для тестового набора 
T2, который, помимо дрейфа всех классов, включает и 
аномалии. Своевременно дообученный классификатор 
SEAEs успешно классифицировал данные с дрейфом и 
аномалиями. 

Рассмотрим результат классификации тестового 
набора Т2 с помощью инкрементного алгоритма HAT  
(см. рис. 7).

a

Рис. 5. Результат обучения (а) и классификации тестового на-
бора T1 (б) с использованием HAT

б

Таблица 4

Результаты оценки качества SEAEs и HAT по тра-
диционным показателям

Классификатор Precision Recall Fscore
SEAEs 1,00 0,99 0,99
HAT 0,65 0,80 0,72

Таблица 5

Результаты оценки качества классификаторов по 
критерию EDCAP (после дообучения)

Классификатор
Показатели качества

Excess Deficit Coating Approx
SEAEs 2,290 0,00 1,00 0,49
HAT 12,48 0,00 1,00 0,12
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По данным рис. 7, а видно, что область принятия 
решений, скорректированная алгоритмом HAT после 
дообучения, осталась значительной за пределами обу-
чающих данных. Из рисунка 7, б следует, что неком-
пактность области принятия решений алгоритма HAT 
привела к пропуску аномалий: они были отнесены ко 
второму классу, кроме того, очевидно, что использо-
вание алгоритма HAT после дообучения привело бы 
к некорректной классификации данных дрейфующего 
третьего класса (cl.3). 

Выводы о качестве классификации, сделанные в 
результате визуального анализа, доказаны значениями 
традиционных показателей качества классификации 
(табл. 6).

Рассмотрим, как менялось качество классификации 
для инкрементного алгоритма HAT в разные моменты 
времени (рис. 8).

На рисунке 8 красной пунктирной линией отмече-
но снижение показателей качества алгоритма при по-

явлении в потоке данных нового класса, дрейфа данных 
и аномалий. При этом, согласно визуальному анализу  
(см. рис. 4, 6) и традиционным критериям (см. табл. 4, 6), 
качество динамического классификатора SEAEs после пер-
вого обучения и дообучения оставалось высоким.

Таким образом, полученные экспериментальные 
результаты на синтетическом наборе данных подтвер-
дили эффективность предложенного метода динами-
ческой классификации на основе масштабируемого 
ансамбля автокодировщиков SEAEs с контролируемой 
с помощью критерия EDCAP областью принятия ре-
шений в сравнении с инкрементным алгоритмом HAT, 
также учитывающим дрейф.

Обсуждение

Особенность подхода состоит в прямой взаимосвязи 
между количеством классов и количеством автокоди-
ровщиков в ансамбле, однако это необходимо для обес-
печения динамической и достоверной классификации 
новых образов. Cледовательно, для предложенного под-
хода характерна большая ресурсоемкость на этапе под-
готовки комплекса и его дообучения в задачах со значи-
тельным и постоянно растущим числом классов.

Отметим, что для адаптации классификатора к но-
вым данным в случае дрейфа только одного класса не-
обходимо дообучение только соответствующего этому 
классу участника ансамбля и общего автокодировщи-

a a

Рис. 6. Результат дообучения (а) и классификации тестового 
набора T2 (б) с использованием SEAEs

б

Рис. 7. Результат дообучения (а) и классификации тестового 
набора T2 (б) с использованием HAT

б

Таблица 6

Результаты оценки дообученных классификаторов 
по традиционным показателям

Классификатор Precision Recall Fscore
SEAEs 1,00 0,99 0,99
HAT 0,78 0,85 0,81
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Рис. 8. График качества классификации синтетического потока данных, включающего новый класс, дрейф и аномалии алгорит-
мом HAT

ка, а в случае появления нового класса — требуется 
синтез нового участника ансамбля и дообучение обще-
го автокодировщика. Такой подход существенно ослаб-
ляет требования к ресурсам в сравнении с подходами, 
где для адаптации многоклассового классификатора, 
реализованного одной сложной моделью или ансамб-
лем моделей, необходимо полное переобучение всей 
модели на всех данных, что является избыточным.

К объективным недостаткам подхода можно отнести:
● ресурсоемкость, обусловленную обучением M + 1 

нейросетевых автокодировщиков для задачи с M клас-
сами и вычислительно сложным в пространстве высо-
кой размерности методом оценки качества EDCAP;

● появление новых классов, ведущее к добавлению 
новых автокодировщиков в ансамбль;

● необходимость выбора параметров kdrift и kanom для 
достоверной классификации в условиях дрейфа новых 
классов и аномалий.

Отметим, что недостатки, связанные с ресурсоем-
костью, могут быть устранены с помощью аппаратных 
средств (GPGPU).

Помимо этого, предлагаемый подход обладает ря-
дом достоинств:

● повышает устойчивость к ошибкам классифика-
ции за счет применения критерия качества EDCAP и 
использования свойств автокодировщиков для контро-
ля области принятия решений и детектирования дрей-
фа, новых классов и аномалий;

● риск обучения на аномалиях может быть сведен к 
минимуму, что важно для многих прикладных систем;

● объединяет в себе решение нескольких задач, ра-
нее вычисляемых отдельными методами;

● параметров алгоритма классификации немного, и 
они имеют понятный смысл;

● ансамбль адаптируется только по необходимости 
и частично, что снижает требования к ресурсам.

Поскольку результаты экспериментов на синтети-
ческих двумерных данных доказали эффективность 
предложенного метода, дальнейшие исследования бу-
дут направлены на тестирование алгоритма SEAEs на 
реальных многомерных потоках данных и сравнение 
его эффективности с традиционными динамическими 
классификаторами.

Заключение

Предложен метод динамической классификации на 
основе масштабируемого ансамбля автокодировщиков 
SEAEs с контролируемым с помощью критерия EDCAP 
качеством, обеспечивающий достоверную класси-
фикацию в условиях дрейфа данных, новых классов, 
аномалий и состязательных атак. Продемонстрирована 
эффективность предлагаемого метода по сравнению с 
инкрементным алгоритмом на основе адаптивного де-
рева Хёффдинга при решении специальной тестовой 
задачи классификации синтетического набора данных, 
включающего дрейф, аномалии и новый класс. Пред-
ложенный метод динамической классификации более 
предсказуем, позволяет повысить качество классифи-
кации и скорость адаптации классификатора к новым 
данным. 
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