Применение барьерных покрытий для защиты от водородного охрупчивания металлов

  • Марат [Marat] Равилевич [R.] Дасаев [Dasaev]
  • Иван [Ivan] Сергеевич [S.] Соколов [Sokolov]
  • Артем [Artem] Вячеславович [V.] Рыженков [Ryzhenkov]
  • Сергей [Sergey] Владимирович [V.] Григорьев [Grigoriev]
  • Иван [Ivan] Алексеевич [A.] Бурцев [Burtsev]
  • Анастасия [Anastasiya] Александровна [A.] Терехова [Terekhova]
Ключевые слова: водородное охрупчивание, барьерные покрытия, проницаемость, водородная энергетика

Аннотация

В последнее десятилетие наблюдается рост случаев применения водорода в качестве энергоресурса. Вместе с тем при эксплуатации необходимой для поддержания водородной энергетики инфраструктуры выявлен ряд проблем. Одним из серьезных вопросов, возникающих в установках для генерации, хранения и транспортировки водорода является его диффузия в металлах, из-за чего происходит водородное охрупчивание, приводящее к снижению механических характеристик конструкционных материалов и, как следствие, к снижению надежности энергетической инфраструктуры и авариям, что, в свою очередь, замедляет развитие водородного сектора энергетики.

Рассмотрены перспективные методы защиты от водородного охрупчивания на основе использования барьерных покрытий и основные методы определения эффективности барьерных покрытий. Выполнен аналитический обзор научно-технической литературы. Проанализированы результаты исследований свойств материалов барьерных покрытий, используемых для защиты от водородного охрупчивания, и методов их нанесения.

Сведения об авторах

Марат [Marat] Равилевич [R.] Дасаев [Dasaev]

кандидат технических наук, ведущий инженер НЦ «Износостойкость» НИУ «МЭИ», e-mail: DasayevMR@mpei.ru

Иван [Ivan] Сергеевич [S.] Соколов [Sokolov]

аспирант кафедры промышленных теплоэнергетических систем НИУ «МЭИ», e-mail: SokolovIvS@mpei.ru

Артем [Artem] Вячеславович [V.] Рыженков [Ryzhenkov]

доктор технических наук, директор НЦ «Износостойкость» НИУ «МЭИ», e-mail: RyzhenkovAV@mpei.ru

Сергей [Sergey] Владимирович [V.] Григорьев [Grigoriev]

кандидат технических наук, ведущий научный сотрудник НЦ «Износостойкость» НИУ «МЭИ», e-mail: GrigoryevSVl@mpei.ru

Иван [Ivan] Алексеевич [A.] Бурцев [Burtsev]

студент НИУ «МЭИ», e-mail: BurtsevIvA@mpei.ru

Анастасия [Anastasiya] Александровна [A.] Терехова [Terekhova]

студент НИУ «МЭИ», e-mail: TerekhovaAA@mpei.ru

Литература

1. French S. The Role of Zero and Low Carbon Hydrogen in Enabling the Energy Transition and the Path to Net Zero Greenhouse Gas Emissions: with Global Policies and Demonstration Projects Hydrogen Can Play a Role in a Net Zero Future // Johnson Matthey Technol. Rev. 2020. V. 64. Pp. 357—370.
2. Parra D., Valverde L., Pino F.J., Patel M.K. A Review on the Role, Cost and Value of Hydrogen Energy Systems for Deep Decarbonisation // Renewable and Sustainable Energy Rev. 2019. V. 101. Pp. 279—294.
3. Capurso T., Stefanizzi M., Torresi M., Camporeale S.M. Perspective of the Role of Hydrogen in the XXI Century Energy Transition // Energy Conversion and Management. 2022. V. 251. P. 114898.
4. Mansilla C., Bourasseau C., Cany C., Guinot B., Duigou A.L., Lucchese P. Chapter 7 — Hydrogen Applications: Overview of the Key Economic Issues and Perspectives // Hydrogen Supply Chains. N.-Y.: Academic Press, 2018. Pp. 271—292.
5. Espegren K., Damman S., Pisciella P., Graabak I., Tomasgard A. The Role of Hydrogen in the Transition from a Petroleum Economy to a Low-carbon Society // Intern. J. Hydrogen Energy. 2021. V. 46. Pp. 23125—23138.
6. Kovač A., Paranos M., Marciuš D. Hydrogen in Energy Transition: a Review // Ibid. Pp. 10016—10035.
7. Okolie J.A. e. a. Futuristic Applications of Hydrogen in Energy, Biorefining, Aerospace, Pharmaceuticals and Metallurgy // Ibid. Pp. 8885—8905.
8. Oshiro K., Fujimori S. Role of Hydrogen-based Energy Carriers as an Alternative Option to Reduce Residual Emissions Associated with Mid-century Decarbonization Goals // Appl. Energy. 2022. V. 313. P. 118803.
9. Hanley E.S., Deane J.P., Gallachóir B.P.Ó. The Role of Hydrogen in Low Carbon Energy Futures — a Review of Existing Perspectives // Renewable and Sustainable Energy Rev. 2018. V. 82. Pp. 3027—3045.
10. Pingkuo L., Xue H. Comparative Analysis on Similarities and Differences of Hydrogen Energy Development in the World's top 4 Largest Economies: a Novel Framework // Intern. J. Hydrogen Energy. 2022. V. 47. Pp. 9485—9503.
11. IEA R.2. 2022 [Электрон. ресурс] https://www.iea.org/events/iea-2022-ministerial-meeting (дата обращения 01.04.2023).
12. Распоряжение Правительства Российской Федерации № 1523-р от 9 июня 2020 г. «Энергетическая стратегия Российской Федерации на период до 2035 года».
13. Распоряжение Правительства Российской Федерации № 2162-р от 5 августа 2021 г. «Концепция развития водородной энергетики в Российской Федерации».
14. Barrera O. е. а. Understanding and Mitigating Hydrogen Embrittlement of Steels: a Review of Experimental, Modelling and Design Progress from Atomistic to Continuum // J. Materials Sci. 2018. V. 53. Pp. 6251—6290.
15. Wasim M., Djukic M.B., Ngo T.D. Influence of Hydrogen-enhanced Plasticity and Decohesion Mechanisms of Hydrogen Embrittlement on the Fracture Resistance of Steel // Engineering Failure Analysis. 2021. V. 123. P. 105312.
16. Dwivedi S.K., Vishwakarma M. Hydrogen Embrittlement in Different Materials: a Review // Intern. J. Hydrogen Energy. 2018. V. 43. Pp. 21603—21616.
17. Abdalla A.M. e. a. Hydrogen Production, Storage, Transportation and Key Challenges with Applications: a Review // Energy Conversion and Management. 2018. V. 165. Pp. 602—627.
18. Moradi R., Groth K.M. Hydrogen Storage and Delivery: Review of the State of the Art Technologies and Risk and Reliability Analysis // Intern. J. Hydrogen Energy. 2019. V. 44. Pp. 12254—12269.
19. Das T., Legrand E., Brahimi S.V., Song J., Yue S. Evaluation of Material Susceptibility to Hydrogen Embrittlement (HE): an Approach Based on Experimental and Finite Element (FE) Analyses // Engineering Fracture Mechanics. 2020. V. 224. P. 106714.
20. Nemanič V. Hydrogen Permeation Barriers: Basic Requirements, Materials Selection, Deposition Methods, and Quality Evaluation // Nuclear Materials and Energy. 2019. V. 19. Pp. 451—457.
21. Dan A., Bijalwan P.K., Pathak A.S., Bhagat A.N. A Review on Physical Vapor Deposition-based Metallic Coatings on Steel as an Alternative to Conventional Galvanized Coatings // J. Coatings Technol and Research. 2022. V. 19. Pp. 403—438.
22. Díaz A., Cuesta I.I., Martinez-Pañeda E., Alegre J.M. Analysis of Hydrogen Permeation Tests Considering Two Different Modelling Approaches for Grain Boundary Trapping In Iron // Intern. J. Fracture. 2020. V. 223. Pp. 17—35.
23. Shi K. e. a. MXene Coatings: Novel Hydrogen Permeation Barriers for Pipe Steels // Nanomaterials. 2021. V. 11. P. 2737.
24. De Souza Brandolt C. e. a. Niobium Coating Applied by HVOF as Protection Against Hydrogen Embrittlement of API 5CT P110 Steel // Surface and Coatings Technol. 2017. V. 322. Pp. 10—18.
25. Hwang J.S., Kim J.H., Kim S.K., Lee J.M. Effect of PTFE Coating on Enhancing Hydrogen Embrittlement Resistance of Stainless Steel 304 for Liquefied Hydrogen Storage System Application // Intern. J. Hydrogen Energy. 2020. V. 45. Pp. 9149—9161.
26. De Souza Brandolt C. e. a. Determination of Hydrogen Trapping Mechanisms by Microprinting in Ni and Co Coatings Obtained by HVOF // Surface and Coatings Technol. 2019. V. 362. Pp. 262—273.
27. Bartolomei M. e. a. Permeation of Chemisorbed Hydrogen Through Graphene: a Flipping Mechanism Elucidated // Carbon. 2021. V. 178. Pp. 718—727.
28. Nam T.H., Lee J.H., Choi S.R., Yoo J.B., Kim J.G. Graphene Coating as a Protective Barrier Against Hydrogen Embrittlement // Intern. J. Hydrogen Energy. 2014. V. 39. Pp. 11810—11817.
29. Shi K. e. a. Hydrogen Permeation Behavior and Mechanism of Multi-layered Graphene Coatings and Mitigation of Hydrogen Embrittlement of Pipe Steel // Appl. Surface Sci. 2022. V. 573. P. 151529.
30. Sun P.Z. e. a. Limits on Gas Impermeability of Graphene // Nature. 2020. V. 579. Pp. 229—232.
31. Yuan S. e. a. A Bi-layer Orientated and Functionalized Graphene-based Composite Coating with Unique Hydrogen Gas Barrier and Long-term Anti-corrosion Performance // Carbon. 2023. V. 205. Pp. 54—68.
32. Abe J.O., Popoola A.P.I., Ajenifuja E., Popoola O.M. Hydrogen Energy, Economy and Storage: Review and Recommendation // Intern. J. Hydrogen Energy. 2019. V. 44. Pp. 15072—15086.
33. Li P. e. a. Preparation of Modified Graphene Oxide/polyethyleneimine Film with Enhanced Hydrogen Barrier Properties by Reactive Layer-by-layer Self-assembly // Composites Part B: Engineering. 2019. V. 166. Pp. 663—672.
34. Yuan S. e. a. A novel Dual-functional Epoxy-based Composite Coating with Exceptional Anti-corrosion and Enhanced Hydrogen Gas Barrier Properties // Chem. Eng. J. 2022. V. 449. P. 137876.
35. Lei Y., Hosseini E., Liu L., Scholes C.A., Kentish S.E. Internal Polymeric Coating Materials for Preventing Pipeline Hydrogen Embrittlement and a Theoretical Model of Hydrogen Diffusion Through Coated Steel // Intern. J. Hydrogen Energy. 2022. V. 47. Pp. 31409—31419.
36. Nangia R., Shukla N.K., Sharma A. Preparation, Structural and Dielectric Properties of Solution Grown Polyvinyl Alcohol (PVA) Film // Proc. IOP Conf. Series: Materials Sci. and Eng. 2017. V. 225. P. 012044.
37. El-Okazy M.A., Liu L., Abdellah M.H., Goudeli E., Kentish S.E. Gas Sorption and Diffusion in Perfluoro (Butenyl Vinyl Ether) Based Perfluoropolymeric Membranes // J. Membrane Sci. 2022. V. 644. P. 120095.
38. Zhang T. e. a. Effects of Surface Oxide Films on Hydrogen Permeation and Susceptibility to Embrittlement of X80 Steel Under Hydrogen Atmosphere // Intern. J. Hydrogen Energy. 2018. V. 43. Pp. 3353—3365.
39. Zhang M. e. a. Preparation of Cr2O3/Al2O3 Bipolar Oxides as Hydrogen Permeation Barriers by Selective Oxide Removal on SS and Atomic Layer Deposition // Intern. J. Hydrogen Energy. 2019. V. 44. Pp. 12277—12287.
40. Wang J. e. a. Hydrogen Permeation Properties of CrxCy@Cr2O3/Al2O3 Composite Coating Derived from Selective Oxidation of a CrC Alloy and Atomic Layer Deposition // Intern. J. Hydrogen Energy. 2018. V. 43. Pp. 21133—21141.
41. Ke N. e. a. Study on the Hydrogen Barrier Performance of the SiOC Coating // Intern. J. Hydrogen Energy. 2022. V. 48(15). Pp. 8286—8295.
42. Moshref-Javadi M., Edris H., Shafyei A., Salimi-Jazi H., Abdolvand E. Evaluation of Hydrogen Permeation Through Standalone Thermally Sprayed Coatings of AISI 316L Stainless Steel // Intern. J. Hydrogen Energy. 2018. V. 43(9). Pp. 4657—4670.
43. Matějíček J. e. a. Characterization of Less Common Nitrides as Potential Permeation Barriers // Fusion Eng. and Design. 2019. V. 139. Pp. 74—80.
44. Liu L. e. a. Fabrication and Hydrogen Permeation Resistance of Dense CrN Coatings // Surface and Coatings Technol. 2022. V. 437. P. 128326.
45. Lakdhar I., Alhussein A., Capelle J., Creus J. Al-Ti-W Alloys Deposited by Magnetron Sputtering: Effective Barrier to Prevent Steel Hydrogen Embrittlement // Appl. Surface Sci. 2023. V. 567. P. 150786.
46. Fite S., Zukerman I., Shabat A.B., Barzilai S. Hydrogen Protection Using CrN Coatings: Experimental and Theoretical Study // Surfaces and Interfaces. 2023. V. 37. P. 102629.
---
Для цитирования: Дасаев М.Р., Соколов И.С., Рыженков А.В., Григорьев С.В., Бурцев И.А., Терехова А.А. Применение барьерных покрытий для защиты от водородного охрупчивания металлов // Вестник МЭИ. 2023. № 6. С. 97—109. DOI: 10.24160/1993-6982-2023-6-97-109
---
Работа выполнена в рамках проекта «Разработка технологических основ защиты от водородного охрупчивания сталей» при поддержке гранта НИУ «МЭИ» на реализацию программы научных исследований «Приоритет 2030: Технологии будущего» в 2022 — 2024 гг
#
1. French S. The Role of Zero and Low Carbon Hydrogen in Enabling the Energy Transition and the Path to Net Zero Greenhouse Gas Emissions: with Global Policies and Demonstration Projects Hydrogen Can Play a Role in a Net Zero Future. Johnson Matthey Technol. Rev. 2020;64:357—370.
2. Parra D., Valverde L., Pino F.J., Patel M.K. A Review on the Role, Cost and Value of Hydrogen Energy Systems for Deep Decarbonisation. Renewable and Sustainable Energy Rev. 2019;101:279—294.
3. Capurso T., Stefanizzi M., Torresi M., Camporeale S.M. Perspective of the Role of Hydrogen in the XXI Century Energy Transition. Energy Conversion and Management. 2022;251:114898.
4. Mansilla C., Bourasseau C., Cany C., Guinot B., Duigou A.L., Lucchese P. Chapter 7 — Hydrogen Applications: Overview of the Key Economic Issues and Perspectives. Hydrogen Supply Chains. N.-Y.: Academic Press, 2018:271—292.
5. Espegren K., Damman S., Pisciella P., Graabak I., Tomasgard A. The Role of Hydrogen in the Transition from a Petroleum Economy to a Low-carbon Society. Intern. J. Hydrogen Energy. 2021;46:23125—23138.
6. Kovač A., Paranos M., Marciuš D. Hydrogen in Energy Transition: a Review. Ibid:10016—10035.
7. Okolie J.A. e. a. Futuristic Applications of Hydrogen in Energy, Biorefining, Aerospace, Pharmaceuticals and Metallurgy. Ibid:8885—8905.
8. Oshiro K., Fujimori S. Role of Hydrogen-based Energy Carriers as an Alternative Option to Reduce Residual Emissions Associated with Mid-century Decarbonization Goals. Appl. Energy. 2022;313:118803.
9. Hanley E.S., Deane J.P., Gallachóir B.P.Ó. The Role of Hydrogen in Low Carbon Energy Futures — a Review of Existing Perspectives. Renewable and Sustainable Energy Rev. 2018;82:3027—3045.
10. Pingkuo L., Xue H. Comparative Analysis on Similarities and Differences of Hydrogen Energy Development in the World's top 4 Largest Economies: a Novel Framework. Intern. J. Hydrogen Energy. 2022;47:9485—9503.
11. IEA R.2. 2022 [Elektron. Resurs] https://www.iea.org/events/iea-2022-ministerial-meeting (Data Obrashcheniya 01.04.2023).
12. Rasporyazhenie Pravitel'stva Rossiyskoy Federatsii № 1523-r ot 9 Iyunya 2020 g. «Energeticheskaya Strategiya Rossiyskoy Federatsii na Period do 2035 Goda». (in Russian).
13. Rasporyazhenie Pravitel'stva Rossiyskoy Federatsii № 2162-r ot 5 Avgusta 2021 g. «Kontseptsiya Razvitiya Vodorodnoy Energetiki v Rossiyskoy Federatsii». (in Russian).
14. Barrera O. е. а. Understanding and Mitigating Hydrogen Embrittlement of Steels: a Review of Experimental, Modelling and Design Progress from Atomistic to Continuum. J. Materials Sci. 2018;53:6251—6290.
15. Wasim M., Djukic M.B., Ngo T.D. Influence of Hydrogen-enhanced Plasticity and Decohesion Mechanisms of Hydrogen Embrittlement on the Fracture Resistance of Steel. Engineering Failure Analysis. 2021;123:105312.
16. Dwivedi S.K., Vishwakarma M. Hydrogen Embrittlement in Different Materials: a Review. Intern. J. Hydrogen Energy. 2018;43:21603—21616.
17. Abdalla A.M. e. a. Hydrogen Production, Storage, Transportation and Key Challenges with Applications: a Review. Energy Conversion and Management. 2018;165:602—627.
18. Moradi R., Groth K.M. Hydrogen Storage and Delivery: Review of the State of the Art Technologies and Risk and Reliability Analysis. Intern. J. Hydrogen Energy. 2019;44:12254—12269.
19. Das T., Legrand E., Brahimi S.V., Song J., Yue S. Evaluation of Material Susceptibility to Hydrogen Embrittlement (HE): an Approach Based on Experimental and Finite Element (FE) Analyses. Engineering Fracture Mechanics. 2020;224:106714.
20. Nemanič V. Hydrogen Permeation Barriers: Basic Requirements, Materials Selection, Deposition Methods, and Quality Evaluation. Nuclear Materials and Energy. 2019;19:451—457.
21. Dan A., Bijalwan P.K., Pathak A.S., Bhagat A.N. A Review on Physical Vapor Deposition-based Metallic Coatings on Steel as an Alternative to Conventional Galvanized Coatings. J. Coatings Technol and Research. 2022;19:403—438.
22. Díaz A., Cuesta I.I., Martinez-Pañeda E., Alegre J.M. Analysis of Hydrogen Permeation Tests Considering Two Different Modelling Approaches for Grain Boundary Trapping In Iron. Intern. J. Fracture. 2020;223:17—35.
23. Shi K. e. a. MXene Coatings: Novel Hydrogen Permeation Barriers for Pipe Steels. Nanomaterials. 2021;11:2737.
24. De Souza Brandolt C. e. a. Niobium Coating Applied by HVOF as Protection Against Hydrogen Embrittlement of API 5CT P110 Steel. Surface and Coatings Technol. 2017;322:10—18.
25. Hwang J.S., Kim J.H., Kim S.K., Lee J.M. Effect of PTFE Coating on Enhancing Hydrogen Embrittlement Resistance of Stainless Steel 304 for Liquefied Hydrogen Storage System Application. Intern. J. Hydrogen Energy. 2020;45:9149—9161.
26. De Souza Brandolt C. e. a. Determination of Hydrogen Trapping Mechanisms by Microprinting in Ni and Co Coatings Obtained by HVOF. Surface and Coatings Technol. 2019;362:262—273.
27. Bartolomei M. e. a. Permeation of Chemisorbed Hydrogen Through Graphene: a Flipping Mechanism Elucidated. Carbon. 2021;178:718—727.
28. Nam T.H., Lee J.H., Choi S.R., Yoo J.B., Kim J.G. Graphene Coating as a Protective Barrier Against Hydrogen Embrittlement. Intern. J. Hydrogen Energy. 2014;39:11810—11817.
29. Shi K. e. a. Hydrogen Permeation Behavior and Mechanism of Multi-layered Graphene Coatings and Mitigation of Hydrogen Embrittlement of Pipe Steel. Appl. Surface Sci. 2022;573:151529.
30. Sun P.Z. e. a. Limits on Gas Impermeability of Graphene. Nature. 2020;579:229—232.
31. Yuan S. e. a. A Bi-layer Orientated and Functionalized Graphene-based Composite Coating with Unique Hydrogen Gas Barrier and Long-term Anti-corrosion Performance. Carbon. 2023;205:54—68.
32. Abe J.O., Popoola A.P.I., Ajenifuja E., Popoola O.M. Hydrogen Energy, Economy and Storage: Review and Recommendation. Intern. J. Hydrogen Energy. 2019;44:15072—15086.
33. Li P. e. a. Preparation of Modified Graphene Oxide/polyethyleneimine Film with Enhanced Hydrogen Barrier Properties by Reactive Layer-by-layer Self-assembly. Composites Part B: Engineering. 2019;166:663—672.
34. Yuan S. e. a. A novel Dual-functional Epoxy-based Composite Coating with Exceptional Anti-corrosion and Enhanced Hydrogen Gas Barrier Properties. Chem. Eng. J. 2022;449:137876.
35. Lei Y., Hosseini E., Liu L., Scholes C.A., Kentish S.E. Internal Polymeric Coating Materials for Preventing Pipeline Hydrogen Embrittlement and a Theoretical Model of Hydrogen Diffusion Through Coated Steel. Intern. J. Hydrogen Energy. 2022;47:31409—31419.
36. Nangia R., Shukla N.K., Sharma A. Preparation, Structural and Dielectric Properties of Solution Grown Polyvinyl Alcohol (PVA) Film. Proc. IOP Conf. Series: Materials Sci. and Eng. 2017;225:012044.
37. El-Okazy M.A., Liu L., Abdellah M.H., Goudeli E., Kentish S.E. Gas Sorption and Diffusion in Perfluoro (Butenyl Vinyl Ether) Based Perfluoropolymeric Membranes. J. Membrane Sci. 2022;644:120095.
38. Zhang T. e. a. Effects of Surface Oxide Films on Hydrogen Permeation and Susceptibility to Embrittlement of X80 Steel Under Hydrogen Atmosphere. Intern. J. Hydrogen Energy. 2018;43:3353—3365.
39. Zhang M. e. a. Preparation of Cr2O3/Al2O3 Bipolar Oxides as Hydrogen Permeation Barriers by Selective Oxide Removal on SS and Atomic Layer Deposition. Intern. J. Hydrogen Energy. 2019;44:12277—12287.
40. Wang J. e. a. Hydrogen Permeation Properties of CrxCy@Cr2O3/Al2O3 Composite Coating Derived from Selective Oxidation of a CrC Alloy and Atomic Layer Deposition. Intern. J. Hydrogen Energy. 2018;43:21133—21141.
41. Ke N. e. a. Study on the Hydrogen Barrier Performance of the SiOC Coating. Intern. J. Hydrogen Energy. 2022;48(15):8286—8295.
42. Moshref-Javadi M., Edris H., Shafyei A., Salimi-Jazi H., Abdolvand E. Evaluation of Hydrogen Permeation Through Standalone Thermally Sprayed Coatings of AISI 316L Stainless Steel. Intern. J. Hydrogen Energy. 2018;43(9):4657—4670.
43. Matějíček J. e. a. Characterization of Less Common Nitrides as Potential Permeation Barriers. Fusion Eng. and Design. 2019;139:74—80.
44. Liu L. e. a. Fabrication and Hydrogen Permeation Resistance of Dense CrN Coatings. Surface and Coatings Technol. 2022;437:128326.
45. Lakdhar I., Alhussein A., Capelle J., Creus J. Al-Ti-W Alloys Deposited by Magnetron Sputtering: Effective Barrier to Prevent Steel Hydrogen Embrittlement. Appl. Surface Sci. 2023;567:150786.
46. Fite S., Zukerman I., Shabat A.B., Barzilai S. Hydrogen Protection Using CrN Coatings: Experimental and Theoretical Study. Surfaces and Interfaces. 2023;37:102629
---
For citation: Dasayev M.R., Sokolov I.S., Ryzhenkov A.V., Grigoryev S.V., Burtsev I.A., Terekhova A.A. Application of Barrier Coatings for Protection Against Hydrogen Embrittlement of Metals. Bulletin of MPEI. 2023;6:97—109. (in Russian). DOI: 10.24160/1993-6982-2023-6-97-109
---
The work is executed within the Framework of the Project «Development of Technological Bases for Protection Against Hydrogen Embrittlement of Steels» with the Support of a Grant from the NRU «MPEI» for the Implementation of the Research Program «Priority 2030: Technologies of the Future» in 2022 — 2024
Опубликован
2023-09-05
Раздел
Энергетические системы и комплексы (технические науки) (2.4.5)