Analyzing the Impact of Sodium Discharge Lamps Inrush Currents on the Street Lighting System and Electric Network Quality

  • Владимир [Vladimir] Павлович [P.] Кузьменко [Kuz’menko]
  • Сергей [Sergey] Валентинович [V.] Солёный [Solenyi]
  • Юрий [Yuriy] Павлович [P.] Кузьменко [Kuz’menko]
Keywords: luminaire starting current, lighting network, electric power quality

Abstract

The amount of electricity consumed for lighting purposes is growing rapidly, despite the development of energy-efficient lighting system technologies. According to numerous forecasts, in the nearest decade, the share of global electricity consumption for lighting needs will reach up to 40% of the total consumption for household and administrative needs. The general trend of technological development to reduce energy consumption and increase the efficiency of its use additionally emphasizes the relevance and necessity of studying various scenarios for upgrading the existing lighting networks and increasing their efficiency by shifting to more high-tech solutions.

Gas-discharge sodium lamps are commonly used for street lighting because they have a relatively long service life and are quite versatile in operation.

The starting current of gas-discharge sodium lamps used in street lighting networks is an important parameter, since it directly affects the lamp performance and service life, as well as the overall efficiency of the lighting system in which these types of light sources are used. A high starting current is required to ignite the gas inside the lamp and generate light. If the inrush current is too low, the lamp may not turn on at all, or turn on very slowly, which leads to flickering and a decrease in brightness. On the other hand, if the inrush current is too high, it can damage the lamp or even the entire lighting system.

The purpose of this work is to study the effectiveness of using sodium gas-discharge lamps as the main light sources in street lighting networks and to determine the feasibility of shifting to more high-tech LED lighting technologies. The results of measurements of starting currents of street lighting luminaires with sodium gas-discharge lamps of an existing administrative building are presented. In carrying out the study, the structural, mathematical, and instrumental methods for analyzing the street lighting network electrical parameters were used. The study results and the accomplished analysis confirm the need to take into account the street lighting systems starting currents, indicate tangible negative effects of the start-up control equipment, which lead to an increase of the current through the zero conductor even with a completely balanced load, as well as noticeable current waveform distortions, which entails problems resulting in a deterioration in the quality of electric network parameters.

Information about authors

Владимир [Vladimir] Павлович [P.] Кузьменко [Kuz’menko]

Ph.D. (Techn.), Assistant Professor of Electromechanics and Robotics Dept., Saint-Petersburg State University of Aerospace Instrumentation, e-mail: mr.konnny@gmail.com

Сергей [Sergey] Валентинович [V.] Солёный [Solenyi]

Ph.D. (Techn.), Head of Electromechanics and Robotics Dept., Saint-Petersburg State University of Aerospace Instrumentation, e-mail: ssv@guap.ru

Юрий [Yuriy] Павлович [P.] Кузьменко [Kuz’menko]

Student of Electromechanics and Robotics Dept., Saint-Petersburg State University of Aerospace Instrumentation, e-mail: spider2boy@mail.ru

References

1. Постановление Правительства Российской Федерации № 321 от 15 апреля 2014 г. «Об утверждении государственной программы Российской Федерации «Развитие энергетики».
2. Кузьменко В.П., Солёный С.В., Шишлаков В.Ф., Солёная О.Я. Измерение качества электроэнергии в системе электроснабжения со светодиодными осветительными устройствами // Научный вестник Новосибирского гос. техн. ун-та. 2019. № 1(74). С. 197—212.
3. Кузьменко В.П., Солёный С.В. Исследование влияния светодиодных прожекторов на процессы управления качеством электрической энергии и энергоэффективностью // Омский научный вестник. 2021. № 2(176). С. 15—19.
4. Kilic T., Goknar I.C., Sakar M.E. Investigation of Inrush Currents in High Intensity Discharge Lamps for Smart Lighting Systems // IEEE Trans. Industrial Electronics. 2020. V. 67(11).
5. Li S.Y., Li X.Z., Li X.C. Soft-start Control for High-pressure Sodium Lamps Based on High-frequency Switching in Parallel Resonant Circuit // IET Power Electronics. 2021. Vol. 14(11).
6. Zhao Y. e. a. Modeling and Analysis of High-intensity Discharge Lamps for Power System Studies // IEEE Trans. Power Delivery. 2012. V. 27(2). Pp. 835—844.
7. Hu J., Li H. Voltage Fluctuation Analysis for Power System with Nonlinear Loads // Proc. IEEE Power & Energy Soc. General Meeting. Portland, 2018. Pp. 1—5.
8. Muttaqi K.M., Sutanto D. Power Quality Issues in Low Voltage Networks: Voltage Fluctuations, Flicker and Harmonics // Energies. 2016. V. 9(4). P. 234.
9. ГОСТ IEC 61010-1—2014. Безопасность электрических контрольно-измерительных приборов и лабораторного оборудования.
10. ГОСТ IEC 61000-3-2—2017. Электромагнитная совместимость (ЭМС).
11. Алферов А.А., Якимов Е.А., Широков О.Г., Алферова Т.В. Влияние светодиодных источников света на содержание гармоник тока и напряжения в системах электроснабжения промышленных предприятий // Вестник ГГТУ им. П.О. Сухого. 2016. № 3. С. 67—73.
12. Кудряшев Г.С., Третьяков А.Н., Шпак О.Н. Оценка влияния высших гармоник на показатели надежности коммутационной аппаратуры // Актуальные вопросы аграрной науки. 2019. № 31. С. 5—13.
13. Дмитриев П. Переходные процессы в электрических сетях при коммутации светодиодных светильников // Полупроводниковая светотехника. 2021. № 3(71). С. 12—17.
14. Калечиц В.Н. Особенности моделирования режимов работы линий наружного освещения // Известия высших учебных заведений и энергетических объединений СНГ. Серия «Энергетика». 2022. № 65(6). С. 499—510.
15. Xiaoyan Guo, Shuqian Liu, Linlin Huang. Optimal Design of Soft Start Circuit for High-pressure Sodium Lamps Used in Street Lighting Systems. N.-Y.: Springer, 2020.
16. Shukla E. e.a. Inrush Current Reduction and Power Factor Correction in High-pressure Sodium Lamp Circuits using a Single Stage Electronic. N.-Y.: Springer, 2019.
---
Для цитирования: Кузьменко В.П., Солёный С.В., Кузьменко Ю.П. Анализ влияния пусковых токов газоразрядных натриевых ламп на систему уличного освещения и качество электрической сети // Вестник МЭИ. 2024. № 1. С. 118—127. DOI: 10.24160/1993-6982-2024-1-118-127
#
1. Postanovlenie Pravitel'stva Rossiyskoy Federatsii № 321 ot 15 Aprelya 2014 g. « Ob Utverzhdenii Gosudarstvennoy Programmy Rossiyskoy Federatsii «Razvitie Energetiki».(in Russian).
2. Kuz'menko V.P., Solenyy S.V., Shishlakov V.F., Solenaya O.Ya. Izmerenie Kachestva Elektroenergii v Sisteme Elektrosnabzheniya so Svetodiodnymi Osvetitel'nymi Ustroystvami. Nauchnyy Vestnik Novosibirskogo Gos. Tekhn. Un-ta. 2019;1(74):197—212. (in Russian).
3. Kuz'menko V.P., Solenyy S.V. Issledovanie Vliyaniya Svetodiodnykh Prozhektorov na Protsessy Upravleniya Kachestvom Elektricheskoy Energii i Energoeffektivnost'yu. Omskiy Nauchnyy Vestnik. 2021;2(176):15—19. (in Russian).
4. Kilic T., Goknar I.C., Sakar M.E. Investigation of Inrush Currents in High Intensity Discharge Lamps for Smart Lighting Systems. IEEE Trans. Industrial Electronics. 2020;67(11).
5. Li S.Y., Li X.Z., Li X.C. Soft-start Control for High-pressure Sodium Lamps Based on High-frequency Switching in Parallel Resonant Circuit. IET Power Electronics. 2021;14(11).
6. Zhao Y. e. a. Modeling and Analysis of High-intensity Discharge Lamps for Power System Studies. IEEE Trans. Power Delivery. 2012;27(2):835—844.
7. Hu J., Li H. Voltage Fluctuation Analysis for Power System with Nonlinear Loads. Proc. IEEE Power & Energy Soc. General Meeting. Portland, 2018:1—5.
8. Muttaqi K.M., Sutanto D. Power Quality Issues in Low Voltage Networks: Voltage Fluctuations, Flicker and Harmonics. Energies. 2016;9(4):234.
9. GOST IEC 61010-1—2014. Bezopasnost' Elektricheskikh Kontrol'no-izmeritel'nykh Priborov i Laboratornogo Oborudovaniya. (in Russian).
10. GOST IEC 61000-3-2—2017. Elektromagnitnaya Sovmestimost' (EMS). (in Russian).
11. Alferov A.A., Yakimov E.A., Shirokov O.G., Alferova T.V. Vliyanie Svetodiodnykh Istochnikov Sveta na Soderzhanie Garmonik Toka i Napryazheniya v Sistemakh Elektrosnabzheniya Promyshlennykh Predpriyatiy. Vestnik GGTU im. P.O. Sukhogo. 2016;3:67—73. (in Russian).
12. Kudryashev G.S., Tret'yakov A.N., Shpak O.N. Otsenka Vliyaniya Vysshikh Garmonik na Pokazateli Nadezhnosti Kommutatsionnoy Apparatury. Aktual'nye Voprosy Agrarnoy Nauki. 2019;31:5—13. (in Russian).
13. Dmitriev P. Perekhodnye Protsessy v Elektricheskikh Setyakh pri Kommutatsii Svetodiodnykh Svetil'nikov. Poluprovodnikovaya Svetotekhnika. 2021;3(71):12—17. (in Russian).
14. Kalechits V.N. Osobennosti Modelirovaniya Rezhimov Raboty Liniy Naruzhnogo Osveshcheniya. Izvestiya Vysshikh Uchebnykh Zavedeniy i Energeticheskikh Ob'edineniy SNG. Seriya «Energetika». 2022;65(6):499—510. (in Russian).
15. Xiaoyan Guo, Shuqian Liu, Linlin Huang. Optimal Design of Soft Start Circuit for High-pressure Sodium Lamps Used in Street Lighting Systems. N.-Y.: Springer, 2020.
16. Shukla E. e. a. Inrush Current Reduction and Power Factor Correction in High-pressure Sodium Lamp Circuits using a Single Stage Electronic. N.-Y.: Springer, 2019
---
For citation: Kuz’menko V.P., Solenyi S.V., Kuz’menko Yu.P. Analyzing the Impact of Sodium Discharge Lamps Inrush Currents on the Street Lighting System and Electric Network Quality. Bulletin of MPEI. 2024;1:118—127. (in Russian). DOI: 10.24160/1993-6982-2024-1-118-127
Published
2023-10-18
Section
Lighting engineering (technical sciences) (2.4.11)