Использование солнечной энергии для энергоснабжения микробной электролизной ячейки
Аннотация
Показаны преимущества и недостатки использования биоэлектрохимической продукции метана с помощью микробной электролизной ячейки (МЭЯ). Цель работы — экспериментальная оценка возможности энергоснабжения микробной электролизной ячейки экспериментальной биогазовой установки. Приведены результаты экспериментальных исследований значений электрического сопротивления субстрата между электродов МЭЯ на разработанной биогазовой установке с интегрированной микробной электролизной ячейкой с физическим барьером. Полученные данные подтверждают возможность функционирования МЭЯ за счет использования солнечной энергии, а также позволяют говорить о развитии электроактивных микроорганизмов, меняющих характерные значения сопротивления субстрата при подаче разницы потенциалов на электроды МЭЯ.
Литература
2. Feng Q., Song Y.C. Decoration of Graphite Fiber Fabric Cathode with Electron Transfer Assisting Material for Enhanced Bioelectrochemical Methane Production // J. Appl. Electrochem. 2016. V. 46. Pp. 1211—1219.
3. Feng Q. e. a. Polarized Electrode Enhances Biological Direct Interspecies Electron Transfer for Methane Production in Upflow Anaerobic Bioelectrochemical Reactor // Chemosphere. 2018. V. 204. Pp. 186—192.
4. Park S.G. e. a. Methanogenesis Stimulation and Inhibition for the Production of Different Target Electrobiofuels in Microbial Electrolysis Cells Through an On-demand Control Strategy Using the Coenzyme M and 2-bromoethanesulfonate // Environ. Int. 2019. V. 131. P. 105006.
5. Song Y.C., Feng Q., Ahn Y. Performance of the Bio-electrochemical Anaerobic Digestion of Sewage Sludge at Different Hydraulic Retention Times // Energy and Fuels. 2016. V. 30. Pp. 352—359.
6. Zhang Y., Merrill M.D., Logan B.E. The Use and Optimization of Stainless Steel Mesh Cathodes in Microbial Electrolysis Cells // Int. J. Hydrogen Energy. 2010. V. 35. Pp. 12020—12028.
7. Sangeetha T. e. a. Energy Recovery Evaluation in an Up Flow Microbial Electrolysis Coupled Anaerobic Digestion (ME-AD) reactor: Role of Electrode Positions and Hydraulic Retention Times // Appl. Energy. 2017. V. 206. Pp. 1214—1224.
8. Guo X., Liu J., Xiao B. Bioelectrochemical Enhancement of Hydrogen and Methane Production from the Anaerobic Digestion of Sewage Sludge in Single-chamber Membrane-free Microbial Electrolysis Cells // Intern. J. Hydrogen Energy. 2013. V. 38. Pp. 1342—1347.
9. Shashikanth Gajaraj, Yuxi Huang, Ping Zheng, Zhiqiang Hu, Methane Production Improvement and Associated Methanogenic Assemblages in Bioelectrochemically Assisted Anaerobic Digestion // Biochem. Eng. J. 2017. V. 117. Pt. B. Pp. 105—112.
10. Alsayed M. e. a. Enhanced Anaerobic Digestion of Phenol Via Electrical Energy Input // Chem. Eng. J. 2020. V. 389. P. 124501.
11. Fu Q. Bioelectrochemical Analyses of the Development of a Thermophilic Biocathode Catalyzing Electromethanogenesis // Environmental Sci. & Technol. 2014. V. 49(2). Pp. 1225—1232.
12. Choi K.-S., Kondaveeti S., Min B. Bioelectrochemical Methane (CH4) Production in Anaerobic Digestion at Different Supplemental Voltages // Bioresource Technol. 2017. V. 245. Pp. 826—832.
13. Ding A., Yang Y., Sun G., Wu D. Impact of Applied Voltage on Methane Generation and Microbial Activities in an Anaerobic Microbial Electrolysis Cell (MEC) // Chem. Eng. J. 2016. V. 283. Pp. 260—265.
14. Zakaria B.S., Dhar B.R. Progress Towards Catalyzing Electro-methanogenesis in Anaerobic Digestion Process: Fundamentals, Process Optimization, Design and Scale-up Considerations // Bioresource Technol. 2019. V. 289. P. 121738.
15. Sun M. e. a. Enhancing Anaerobic Digestion Performance of Synthetic Brewery Wastewater with Direct Voltage // Bioresource Technol. 2020. V. 315. P. 123764.
16. Liwen L. e. a. Evaluation of Methanogenic Microbial Electrolysis Cells (MECs) under Closed/Open Circuit Operations // Environmental Technol. 2017. V. 39. Pp. 1—27.
17. Feng Y., Zhang Y., Chen S., Quan X. Enhanced Production of Methane from Waste Activated Sludge by the Combination of High-solid Anaerobic Digestion and Microbial Electrolysis Cell with Iron-graphite Electrode // Chem. Eng. J. 2015. V. 259. Pp. 787—794.
18. Cai W. e. a. Biocathodic Methanogenic Community in an Integrated Anaerobic Digestion and Microbial Electrolysis System for Enhancement of Methane Production from Waste Sludge // ACS Sustainable Chem. & Eng. 2016. V. 4. Pp. 1—9.
19. Yu Z. e. a. A Review on the Applications of Microbial Electrolysis Cells in Anaerobic Digestion // Bioresource Technol. 2018. V. 255. Pp. 340—348.
20. Ковалев А.А., Ковалев Д.А., Панченко В.А. Разработка инновационных технических средств, использующих солнечную энергию, для интенсификации анаэробной биоконверсии // Вестник МЭИ. 2023. № 3. С. 95—101.
21. Ковалев А.А., Панченко В.А. Разработка и создание системы «анаэробная биоконверсия — микробная электролизная ячейка» с использованием преобразователей солнечной энергии // Фёдоровские чтения — 2022: Материалы LII Всеросс. науч.-практ. конф. с междунар. участием, с элементами научной школы для молодежи. М: Издат. дом МЭИ, 2022. С. 352—359.
---
Для цитирования: Ковалев А.А., Ковалев Д.А., Панченко В.А. Использование солнечной энергии для энергоснабжения микробной электролизной ячейки // Вестник МЭИ. 2024. № 3. С. 42—49. DOI: 10.24160/1993-6982-2024-3-42-49
---
Исследование выполнено при поддержке Российского научного фонда (грант № 22-49-02002, https://rscf.ru/project/22-49-02002/ )
#
1. Kallistova A.Yu., Litti Yu.V., Kevbrina M.V., Nozhevnikova A.N. Biotekhnologiya i Mikrobiologiya Anaerobnoy Pererabotki Organicheskikh Kommunal'nykh Otkhodov. M.: Universitetskaya Kniga, 2016. (in Russian).
2. Feng Q., Song Y.C. Decoration of Graphite Fiber Fabric Cathode with Electron Transfer Assisting Material for Enhanced Bioelectrochemical Methane Production. J. Appl. Electrochem. 2016;46:1211—1219.
3. Feng Q. e. a. Polarized Electrode Enhances Biological Direct Interspecies Electron Transfer for Methane Production in Upflow Anaerobic Bioelectrochemical Reactor. Chemosphere. 2018;204:186—192.
4. Park S.G. e. a. Methanogenesis Stimulation and Inhibition for the Production of Different Target Electrobiofuels in Microbial Electrolysis Cells Through an On-demand Control Strategy Using the Coenzyme M and 2-bromoethanesulfonate. Environ. Int. 2019;131:105006.
5. Song Y.C., Feng Q., Ahn Y. Performance of the Bio-electrochemical Anaerobic Digestion of Sewage Sludge at Different Hydraulic Retention Times. Energy and Fuels. 2016;30:352—359.
6. Zhang Y., Merrill M.D., Logan B.E. The Use and Optimization of Stainless Steel Mesh Cathodes in Microbial Electrolysis Cells. Int. J. Hydrogen Energy. 2010;35:12020—12028.
7. Sangeetha T. e. a. Energy Recovery Evaluation in an Up Flow Microbial Electrolysis Coupled Anaerobic Digestion (ME-AD) reactor: Role of Electrode Positions and Hydraulic Retention Times. Appl. Energy. 2017;206:1214—1224.
8. Guo X., Liu J., Xiao B. Bioelectrochemical Enhancement of Hydrogen and Methane Production from the Anaerobic Digestion of Sewage Sludge in Single-chamber Membrane-free Microbial Electrolysis Cells. Intern. J. Hydrogen Energy. 2013;38:1342—1347.
9. Shashikanth Gajaraj, Yuxi Huang, Ping Zheng, Zhiqiang Hu, Methane Production Improvement and Associated Methanogenic Assemblages in Bioelectrochemically Assisted Anaerobic Digestion. Biochem. Eng. J. 2017;117;B:105—112.
10. Alsayed M. e. a. Enhanced Anaerobic Digestion of Phenol Via Electrical Energy Input. Chem. Eng. J. 2020;389:124501.
11. Fu Q. Bioelectrochemical Analyses of the Development of a Thermophilic Biocathode Catalyzing Electromethanogenesis. Environmental Sci. & Technol. 2014;49(2):1225—1232.
12. Choi K.-S., Kondaveeti S., Min B. Bioelectrochemical Methane (CH4) Production in Anaerobic Digestion at Different Supplemental Voltages. Bioresource Technol. 2017;245:826—832.
13. Ding A., Yang Y., Sun G., Wu D. Impact of Applied Voltage on Methane Generation and Microbial Activities in an Anaerobic Microbial Electrolysis Cell (MEC). Chem. Eng. J. 2016;283:260—265.
14. Zakaria B.S., Dhar B.R. Progress Towards Catalyzing Electro-methanogenesis in Anaerobic Digestion Process: Fundamentals, Process Optimization, Design and Scale-up Considerations. Bioresource Technol. 2019;289:121738.
15. Sun M. e. a. Enhancing Anaerobic Digestion Performance of Synthetic Brewery Wastewater with Direct Voltage. Bioresource Technol. 2020;315:123764.
16. Liwen L. e. a. Evaluation of Methanogenic Microbial Electrolysis Cells (MECs) under Closed/Open Circuit Operations. Environmental Technol. 2017;39:1—27.
17. Feng Y., Zhang Y., Chen S., Quan X. Enhanced Production of Methane from Waste Activated Sludge by the Combination of High-solid Anaerobic Digestion and Microbial Electrolysis Cell with Iron-graphite Electrode. Chem. Eng. J. 2015;259:787—794.
18. Cai W. e. a. Biocathodic Methanogenic Community in an Integrated Anaerobic Digestion and Microbial Electrolysis System for Enhancement of Methane Production from Waste Sludge. ACS Sustainable Chem. & Eng. 2016;4:1—9.
19. Yu Z. e. a. A Review on the Applications of Microbial Electrolysis Cells in Anaerobic Digestion. Bioresource Technol. 2018;255:340—348.
20. Kovalev A.A., Kovalev D.A., Panchenko V.A. Razrabotka Innovatsionnykh Tekhnicheskikh Sredstv, Ispol'zuyushchikh Solnechnuyu Energiyu, dlya Intensifikatsii Anaerobnoy Biokonversii. Vestnik MEI. 2023;3:95—101. (in Russian).
21. Kovalev A.A., Panchenko V.A. Razrabotka i Sozdanie Sistemy «Anaerobnaya Biokonversiya — Mikrobnaya Elektroliznaya Yacheyka» s Ispol'zovaniem Preobrazovateley Solnechnoy Energii. Fedorovskie Chteniya — 2022: Materialy LII Vseross. Nauch.-prakt. Konf. s Mezhdunar. Uchastiem, s Elementami Nauchnoy Shkoly dlya Molodezhi. M: Izdat. Dom MEI, 2022:352—359. (in Russian)
---
For citation: Kovalev A.A., Kovalev D.A., Panchenko V.A. Using Solar Energy to Power a Microbial Electrolysis Cell. Bulletin of MPEI. 2024;3:42—49. (in Russian). DOI: 10.24160/1993-6982-2024-3-42-49
---
The study was carried out with the support of the Russian Science Foundation (Grant No. 22-49-02002, https://rscf.ru/project/22-49-02002/)