The Physical and Technological Problems of Controlled Thermonuclear Fusion

  • Виктор [Viktor] Петрович [P.] Афанасьев [Afanas'ev]
  • Вячеслав [Vyacheslav] Петрович [P.] Будаев [Budaev]
  • Алексей [Aleksey] Викторович [V.] Дедов [Dedov]
  • Александр [Aleksandr] Валентинович [V.] Елецкий [Eletskii]
  • Александр [Aleksandr] Тимофеевич [T.] Комов [Komov]
  • Владимир [Vladimir] Михайлович [M.] Кулыгин [Kulygin]
  • Александр [Aleksandr] Владимирович [V.] Лубенченко [Lubenchenko]
  • Сергей [Sergey] Дмитриевич [D.] Федорович [Fedorovich]
  • Нгуен-Куок [Nguyen-Kuok] Ши [Shi]
Keywords: heat transfer, hydrodynamics, thermonuclear fusion, nanotechnologies

Abstract

The lines of scientific activity and the results of investigations carried out at the MPEI Department of General Physics and Nuclear Fusion are briefly reviewed. The conducted activities are mainly focused on the problems of controlled thermonuclear fusion and plasma technologies. Efforts are taken to study heat transfer and hydrodynamics in the plasma-facing structural components of thermonuclear reactors, one-sided heating of which results in essentially nonuniform distributions of heat flux density and wall temperature over the pipe inner perimeter. Another line of research activities is concerned with experimental investigations of nucleate boiling and heat transfer in essentially subcooled flow, of enhanced heat transfer in annular channels and models of pebble fuel element beds, and of heat transfer enhancement as applied to the problems concerned with cooling the International thermonuclear experimental reactor (ITER). A large-scale test bench for studying thermal-hydraulic processes in the models of advanced nuclear fuel assemblies operating with the parameters of a VVER-type reactor has been constructed. Activities are underway on studying the resistance of refractory metals to the effect of powerful plasma and heat fluxes expected to take place in a tokamak-type thermonuclear reactor. A plasma installation equipped with a linear multicusp magnetic system featuring uniquely high parameters has been constructed, which is used to perform tests of materials exposed to megawatt-scale hot plasma. The unique plasma installation has been constructed for studying plasma-to-surface interaction and high-temperature plasma testing of refractory materials like tungsten, molybdenum, steel, etc. The experiments to be performed on the installation are aimed at developing a new technology for producing a highly porous surface nanostructure of refractory metal, including tungsten “fuzz”. Such investigations are topical for inventing new materials that are of considerable interest for nuclear, chemical, power, and biomedical technologies. The main lines of activities on nanotechnologies include obtaining, studying and using carbon nanostructures such as fullerenes, carbon nanotubes, graphene, and their derivatives. Within the framework of studying the strengthening phenomenon, the extent of steel surface strengthening as a function of the type and intensity of incident radiation, and the type of nanocarbon material is considered. The interaction of charged particles and radiation with structural materials is investigated. Experimental and theoretical investigations of the interaction of electrons and light ions with inhomogeneous solid bodies are continued to solve the problems concerned with scattering ion beams in inhomogeneous media. Innovative methods for destructive and non-destructive analysis of thin films are developed, including layer-wise analysis techniques. Unique plasma installations have been constructed at the department, such as a high-frequency induction plasmatron for carrying out chemical spectral analysis, an arc plasmatron for studying the free plasma burning processes, a high-voltage installation for studying streamer and arc discharges with electrolysis, and a cold plasma installation for studying the effect of discharge on biological tissues. All these installations are successfully used for carrying out both research activities and student training laboratory works.

Information about authors

Виктор [Viktor] Петрович [P.] Афанасьев [Afanas'ev]

Science degree:

Dr.Sci. (Phys.-Math.)

Workplace

General Physics and Nuclear Fusion Dept., NRU MPEI

Occupation

Professor

Вячеслав [Vyacheslav] Петрович [P.] Будаев [Budaev]

Science degree:

Dr.Sci. (Phys.-Math.)

Workplace

General Physics and Nuclear Fusion Dept., NRU MPEI

Occupation

Professor

Алексей [Aleksey] Викторович [V.] Дедов [Dedov]

Science degree:

Ph.D. (Techn.), Corresponding Member of RAS

Workplace

General Physics and Nuclear Fusion Dept., NRU MPEI

Occupation

Head of Dept., Director of Thermal and Nuclear Power Engineering Institute

Александр [Aleksandr] Валентинович [V.] Елецкий [Eletskii]

Science degree:

Dr.Sci. (Phys.-Math.)

Workplace

General Physics and Nuclear Fusion Dept., NRU MPEI

Occupation

Professor

Александр [Aleksandr] Тимофеевич [T.] Комов [Komov]

Science degree:

Dr. Sci. (Techn.)

Workplace

General Physics and Nuclear Fusion Dept., NRU MPEI

Occupation

Professor, Rector Advisor

Владимир [Vladimir] Михайлович [M.] Кулыгин [Kulygin]

Science degree:

Ph.D. (Phys.-Math.)

Workplace

General Physics and Nuclear Fusion Dept., NRU MPEI

Occupation

Assistant Professor

Александр [Aleksandr] Владимирович [V.] Лубенченко [Lubenchenko]

Science degree:

Dr.Sci. (Techn.)

Workplace

General Physics and Nuclear Fusion Dept., NRU MPEI

Occupation

Professor

Сергей [Sergey] Дмитриевич [D.] Федорович [Fedorovich]

Science degree:

Ph.D. (Techn.)

Workplace

General Physics and Nuclear Fusion dept., NRU MPEI

Occupation

Assistant Professor

Нгуен-Куок [Nguyen-Kuok] Ши [Shi]

Science degree:

Dr.Sci. (Phys.-Math.)

Workplace

General Physics and Nuclear Fusion Dept., NRU MPEI

Occupation

Professor

References

1. Dedov A.V., Komov A.T., Varava A.N., Yagov V.V. Hydrodynamics and Heat Transfer in Swirl Flow Under Conditions of One-Side Heating. Pt. 2. Boiling Heat Transfer. Critical Heat Fluxes // Intern. J. Heat and Mass Transfer. 2010. No. 53 (21—22). Pp. 4966—4975.

2. Болтенко Э.А. и др. Исследование теплоотдачи и гидравлического сопротивления в кольцевом канале с интенсификаторами теплообмена // Теплоэнергетика. 2015. № 3. С. 22—28.

3. Smorchkova Y.V., Varava A.N., Dedov A.V., Komov A.T. Experimental Study of Fluid Dynamics in the Pebble Bed in a Radial Coolant Flow // J. Phys. Conf. Ser. 2016. V. 754. Pp. 1—5.

4. Будаев В.П. Результаты испытаний вольфрамовых мишеней дивертора при мощных плазменно-тепловых нагрузках, ожидаемых в ИТЭР и токамаках реакторного масштаба (обзор) // Вопросы атомной науки и техники. Серия «Термоядерный синтез». 2015. № 38 (4). С. 5—33.

5. Budaev V.P. e. a. Tungsten Recrystalization and Cracking under Iter-relevant Heat Loads // J. Nucl. Mater. 2015. Vol. 463. Pp. 237—240.

6. Будаев В.П. и др. Дальние корреляции в структуре фрактальных пленок // Письма в ЖЭТФ. 2012. № 95 (2). С. 84—90.

7. Будаев В.П. и др. Рекристаллизация и изменение рельефа поверхности стали под воздействием излучения в плазменных разрядах большой мощности // Физика плазмы. 2013. Т. 39. № 11. С. 1017—1031.

8. Будаев В.П. Стохастическая кластеризация поверхности при взаимодействии плазмы с материалами// Письма в ЖЭТФ. 2017. Т. 105. Вып. 5. С. 284—290.

9. Бочаров Г.С. и др. Оптимизация упрочнения стальной поверхности углеродными наноструктурами с последующей обработкой высокоинтенсивными источниками // Поверхность. 2017. № 12.

10. Hummers W.S., Offeman R.E. Preparation of Graphitic Oxide // J. Am. Chem. Soc. 1958. V. 80. P. 1339.

11. Li D. e. a. Processable Aqueous Dispersions of Graphene Nanosheets // Nat. Nanotech. 2008. V. 3. P. 101.

12. Pei S.F., Cheng H.M. The Reduction of Graphene Oxide // Carbon. 2011. V. 50. Pр. 3210—3228.

13. Бочаров Г.С. и др. Термическое восстановление оксида графена // Наноструктуры в конденсированных средах. Минск: Институт тепло- и массообмена им. А.В. Лыкова, 2016. С. 308—314.

14. Eletskii A.V., Bocharov G.S. Physical and Chemical Characteristics of Partially Reduced Graphene Oxide // Proc. Graphene-2017. Barcelona (Spain), 2017. Pp. 28—31.

15. Кукушкин В.И., Ваньков А.В., Кукушкин И.В. К вопросу о дальнодействии поверхностно-усиленного рамановского рассеяния // Письма ЖЭТФ. 2013. Т. 98. № 2. С. 72—77.

16. Елецкий А.В. Углеродные нанотрубки и их эмиссионные свойства // УФН. 2002. № 172. С. 401—438.

17. Eletskii A.V., Bocharov G.S. Emission Properties of Carbon Nanotubes and Cathodes on Their Basis // Plasma Sources Sci. and Tech. 2009. V. 18. P. 034013.

18. Елецкий А.В. Холодные полевые эмиттеры на основе углеродных нанотрубок // УФН. 2010. Т. 180. № 9. C. 897—930.

19. Bocharov G.S., Eletskii A.V. Theory of CNT- based Electron Field Emitters // Nanomaterials. 2013. V. 3. Pр. 393—442.

20. Bocharov G.S., Belsky M.D., Eletskii A.V., Sommerer T. Electrical Field Enhancement in Carbon Nanotube-Based Electron Field Cathodes // Fullerenes, Nanotubes, and Carbon Nanostructures. 2010. V. 19. Pр. 92—99.

21. Blackie, E.J., Le Ru E.C., Etchegoin, P.G. Single-Molecule Surface-Enhanced Raman Spectroscopy of Nonresonant Molecules // J. Am. Chem. Soc. 2009. V. 131 (40). P. 14466.

22. Le Ru E.C., Blackie E., Meyer M., Etchegoin P.G. Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study // J. Phys. Chem. C. 2007. V. 111 (37). P. 13794.

23. Nie S., Emory S.R. Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering // Sci. 1997. V. 275 (5303). P. 1102.

24. Le Ru E.C., Meyer M., Etchegoin P.G. Proof of Single-Molecule Sensitivity in Surface Enhanced Raman Scattering (SERS) by Means of a Two-Analyte Technique// J. Phys. Chem. B. 2006. V. 110 (4). P. 1944.

25. Kostanovskiy I.A., Afanas'ev V.P., Naujoks D., Mayer M. Hydrocarbon Isotope Detection By Elastic Peak Electron Spectroscopy // J. Electron Spectroscopy and Related Phenomena. 2015. V. 202 . Pp. 22—25.

26. Afanas’ev V.P. e. a. Determination of Atomic Hydrogen in Hydrocarbons by Means of the Reflected Electron Energy Loss Spectroscopy and the X-Ray Photoelectron Spectroscopy // J. Phys.: Conf. Series. 2016. V. 748. P. 012005.

27. CasaXPS. Proc. Software for XPS, AES, SIMS and More [Офиц. сайт] http://www.casaxps.com (дата обра- щения 03.06.2017)

28. Briggs D., Grant J.T. Surface Analysis by Auger and X-Ray Photoelectron Spectroscopy. Chichester: IM Publ., 2003.

29. Tilinin I.S, Jablonski A., Zemek J., Hucek S. Escape Probability of Signal Photoelectrons from Non-crystalline Solids: Influence of Anisotropy of Photoemission // J. Electron Spectrosc. Relat. Phenom. 1997. V. 87. P. 127. Pp. 127—140.

30. Jablonski A., Zemek J. // J Phys. Rev. B. 1993. V. 48. P. 4799.

31. Афанасьев В.П., Капля П.С., Головина О.Ю., Грязев А.С. Расшифровка спектров РФЭС с последовательным учeтом влияния процессов многократного упругого и неупругого рассеяния // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2015. № 1. C. 68—73.

32. Afanas’ev V., Gryazev A. Angular Distribution of XPS Peaks by Layers of a Finite Thickness // Advanced Materials Research. 2015. V. 1085. P. 496—501.

33. Afanas’ev e. a. Photoelectron Spectra of Finite- Thickness Layers // J. Vacuum Sci.&Tech. B. 2015. V. 33. P. 03D101.

34. Afanas’ev V.P., Kaplya P.S., Gryazev A.S. Angle-Resolved Photoelectron Spectra of Layers of Finite Thickness // J. Surface Investigation. X-ray, Synchrotron and Neutron Tech. 2015. V. 9. P. 590—598.

35. Афанасьев В.П. и др. Расчет рентгеновских спектров фотоэлектронов в широком интервале потерь энергии // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2015. № 9. С. 9—14.

36. Афанасьев В.П., Грязев А.С., Кузнецова А.В., Ляпунов Н.В. Восстановление дифференциальных сечений неупругого рассеяния электронов из РФЭС и ХПЭ спектров бериллия и углерода // Ядерная физика и инжиниринг. 2015. № 9—10. С. 498—503.

37. Афанасьев В.П. и др. Спектры характеристических потерь энергии ниобия, дифференциальные сечения неупругих потерь энергии и рентгеновские фотоэлектронные спектры с угловым разрешением // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2016. № 1. С. 73—79.

38. Afanas’ev V.P., Gryazev A.S., Kaplya P.S., AndreyevaYu.O., Intrinsic Excitation Effect for the Al and Mg Samples XPS Analysis // J. Surface Investigation. X-ray, Synchrotron and Neutron Techniques. 2016. V. 10 (1). Pр. 108—112.

39. Афанасьев В.П., Капля П.С., Лисицына Е.Д. Малоугловое приближение и модель Освальда–Каспера–Гауклера в задачах отражения электронов от твердых тел // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2016. № 3. C. 66—71.

40. Afanas’ev V.P., Efremenko D.S., Kaplya P.S. Analytical and Numerical Methods for Computing Electron Partial Intensities in the Case of Multilayer Systems // J. Electron Spectroscopy and Related Phenomena. 2016. V. 210. Pp. 16—29.

41. Афанасьев В.П. и др. Восстановление дифференциальных сечений неупругого рассеяния на основе спектров рентгеновской фотоэлектронной эмиссии // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2016. № 9. С. 27—32.

42. Kaplya P.S., Afanas’ev V.P. Correction Coefficients in X-ray Photoelectron Spectroscopy // J. Surface Investigation. X-ray, Synchrotron and Neutron Tech. 2016. V. 10 (5). Pp. 1053—1059.

43. Afanas’ev V.P. e. a. Kilovolt Electron Back- scattering // Z. Phys. B. Cond. Mat. 1994. V. 96. Pp. 253—259.

44. Werner W.S.M. // Surf. Interface Anal. 1995. V. 23. P. 737.

45. Hofmann S. Auger and X-ray Photoelectron Spectroscopy in Material Science. Berlin: Springer-Verlag, 2013.

46. Капля П.С. Создание высокоточных методов анализа твердых тел на основе расшифровки данных электронной спектроскопии методами инвариантного погружения: дисс. ... канд. физ.-мат. наук. М., 2016.

47. Galindo R.E. e. a. Towards Nanometric Resolution in Multilayer Depth Profiling: a Comparative Study of RBS, SIMS, XPS and GDOES // Analytical and Bioanalytical Chem. 2010. V. 396. No. 8. Pp. 2725—2740.

48. Lubenchenko A.V. e. a. An XPS Method for Layer Profiling of NbN Thin Films // EPJ Web of Conf. 2017. V. 132. P. 03053.

49. Лубенченко А.В. и др. Исследование наноразмерных пленок ниобия и нитрида ниобия методом РФЭС // Радиоэлектроника, электротехника и энергетика: Тезисы XXII Междунар. науч.-техн. конф. М.: Изд-во МЭИ, 2016. С. 41.

50. Meledin D. e. a. A 1.3-THz Balanced Waveguide HEB Mixer for the APEX Telescope // IEEE Trans. on Microwave Theory and Tech. 2009. V. 57 (1). P. 89.
---
Для цитирования: Афанасьев В.П., Будаев В.П., Дедов А.В., Елецкий А.В., Комов А.Т., Кулыгин В.М., Лубенченко А.В., Федорович С.Д., Ши Нгуен-Куок. Физико-технические проблемы управляемого термоядерного синтеза // Вестник МЭИ. 2017. № 6. С. 31—43. DOI: 10.24160/1993-6982-2017-6-31-43.
#
1. Dedov A.V., Komov A.T., Varava A.N., Yagov V.V. Hydrodynamics and Heat Transfer in Swirl Flow Under Conditions of One-Side Heating. Pt. 2. Boiling Heat Transfer. Critical Heat Fluxes. Intern. J. Heat and Mass Transfer. 2010;53 (21—22):4966—4975.

2. Boltenko E.A. i dr. Issledovanie Teplootdachi i Gidravlicheskogo Soprotivleniya v Kol'tsevom Kanale s Intensifikatorami Teploobmena. Teploenergetika. 2015;3:22—28. (in Russian).

3. Smorchkova Y.V., Varava A.N., Dedov A.V., Komov A.T. Experimental Study of Fluid Dynamics in the Pebble Bed in a Radial Coolant Flow. J. Phys. Conf. Ser. 2016:754:1—5.

4. Budaev V.P. Rezul'taty Ispytaniy Vol'framovyh Misheney Divertora pri Moshchnyh Plazmenno- teplovyh Nagruzkah, Ozhidaemyh v ITER i Tokamakah Reaktornogo Masshtaba (Obzor). Voprosy Atomnoy Nauki i Tekhniki. Seriya «Termoyadernyy Sintez». 2015;38 (4):5—33. (in Russian).

5. Budaev V.P. e. a. Tungsten Recrystalization and Cracking under Iter-relevant Heat Loads. J. Nucl. Mater. 2015. Vol. 463:237—240.

6. Budaev V.P. i dr. Dal'nie Korrelyatsii v Strukture Fraktal'nyh Plenok. Pis'ma v ZHETF. 2012;95 (2):84—90. (in Russian).

7. Budaev V.P. i dr. Rekristallizatsiya i Izmenenie Rel'efa Poverhnosti Stali pod Vozdeystviem Izlucheniya v Plazmennyh Razryadah Bol'shoy Moshchnosti. Fizika Plazmy. 2013;39;11:1017—1031. (in Russian).

8. Budaev V.P. Stohasticheskaya Klasterizatsiya Poverhnosti pri Vzaimodeystvii Plazmy s Materialami. Pis'ma v ZHETF. 2017;105;5:284—290. (in Russian).

9. Bocharov G.S. i dr. Optimizatsiya Uprochneniya Stal'noy Poverhnosti Uglerodnymi Nanostrukturami s Posleduyushchey Obrabotkoy Vysokointensivnymi istochnikami. Poverhnost'. 2017;12. (in Russian).

10. Hummers W.S., Offeman R.E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958;80:1339.

11. Li D. e. a. Processable Aqueous Dispersions of Graphene Nanosheets. Nat. Nanotech. 2008;3:101.

12. Pei S.F., Cheng H.M. The Reduction of Graphene Oxide. Carbon. 2011;50:3210—3228.

13. Bocharov G.S. i dr. Termicheskoe Vosstanovlenie Oksida Grafena. Nanostruktury v Kondensirovannyh Sredah. Minsk: Institut Teplo- i Massoobmena im. A.V. Lykova. 2016:308—314. (in Russian).

14. Eletskii A.V., Bocharov G.S. Physical and Chemical Characteristics of Partially Reduced Graphene Oxide. Proc. Graphene-2017. Barcelona (Spain), 2017:28—31.

15. Kukushkin V.I., Van'kov A.V., Kukushkin I.V. K Voprosu o Dal'nodeystvii Poverhnostno- usilennogo Ramanovskogo Rasseyaniya. Pis'ma ZHETF. 2013;98;2:72—77. (in Russian).

16. Eletskiy A.V. Uglerodnye Nanotrubki i ih Emission- nye Svoystva. UFN. 2002;172:401—438. (in Russian).

17. Eletskii A.V., Bocharov G.S. Emission Properties of Carbon Nanotubes and Cathodes on Their Basis. Plasma Sources Sci. and Tech. 2009;18:034013.

18. Eletskiy A.V. Holodnye Polevye Emittery na Osnove Uglerodnyh Nanotrubok. UFN. 2010;180;9:897—930. (in Russian).

19. Bocharov G.S., Eletskii A.V. Theory of CNT-based Electron Field Emitters. Nanomaterials. 2013;3:393—442.

20. Bocharov G.S., Belsky M.D., Eletskii A.V., Sommerer T. Electrical Field Enhancement in Carbon Nanotube-Based Electron Field Cathodes. Fullerenes, Nanotubes, and Carbon Nanostructures. 2010;19:92—99.

21. Blackie, E.J., Le Ru E.C., Etchegoin, P.G. Single-Molecule Surface-Enhanced Raman Spectroscopy of Nonresonant Molecules. J. Am. Chem. Soc. 2009;131 (40):14466.

22. Le Ru E.C., Blackie E., Meyer M., Etchegoin P.G. Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study. J. Phys. Chem. C. 2007; 111 (37):13794.

23. Nie S., Emory S.R. Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Sci. 1997; 275 (5303):1102.

24. Le Ru E.C., Meyer M., Etchegoin P.G. Proof of Single-Molecule Sensitivity in Surface Enhanced Raman Scattering (SERS) by Means of a Two-Analyte Technique. J. Phys. Chem. B. 2006;110 (4):1944.

25. Kostanovskiy I.A., Afanas'ev V.P., Naujoks D., Mayer M., Hydrocarbon Isotope Detection By Elastic Peak Electron Spectroscopy. J. Electron Spectroscopy and Related Phenomena. 2015;202:22—25.

26. Afanas’ev V.P. e. a. Determination of Atomic Hydrogen in Hydrocarbons by Means of the Reflected Electron Energy Loss Spectroscopy and the X-Ray Photoelectron Spectroscopy. J. Phys.: Conf. Series. 2016; 748:012005.

27. CasaXPS. Proc. Software for XPS, AES, SIMS and More [Ofits. Sayt] http://www.casaxps.com (Data Obrashcheniya 03.06.2017)

28. Briggs D., Grant J.T. Surface Analysis by Auger and X-Ray Photoelectron Spectroscopy. Chichester: IM Publ., 2003.

29. Tilinin I.S, Jablonski A., Zemek J., Hucek S. Escape Probability of Signal Photoelectrons from Non-crystalline Solids: Influence of Anisotropy of Photoemission. J. Electron Spectrosc. Relat. Phenom. 1997;87;127:127—140.

30. Jablonski A., Zemek J. J Phys. Rev. B. 1993;48:4799.

31. Afanas'ev V.P., Kaplya P.S., Golovina O.Yu., Gryazev A.S. Rasshifrovka Spektrov RFES s Posledovatel'nym Uchetom Vliyaniya Protsessov Mnogokratnogo Uprugogo i Neuprugogo Rasseyaniya. Poverhnost'. Rentgenovskie, Sinhrotronnye i Neytronnye Issledovaniya. 2015;1:68—73. (in Russian).

32. Afanas’ev V., Gryazev A. Angular Distribution of XPS Peaks by Layers of a Finite Thickness. Advanced Materials Research. 2015;1085:496—501.

33. Afanas’ev e. a. Photoelectron Spectra of Finite- Thickness Layers. J. Vacuum Sci.&Tech. B. 2015;33: 03D101.

34. Afanas’ev V.P., Kaplya P.S., Gryazev A.S. Angle-Resolved Photoelectron Spectra of Layers of Finite Thickness. J. Surface Investigation. X-ray, Synchrotron and Neutron Tech. 2015;9:590—598.

35. Afanas'ev V.P. i dr. Raschet Rentgenovskih Spektrov Fotoelektronov v Shirokom Intervale Poter' Energii. Poverhnost'. Rentgenovskie, Sinhrotronnye i Neytronnye Issledovaniya. 2015;9:9—14. (in Russian).

36. Afanas'ev V.P., Gryazev A.S., Kuznetsova A.V., Lyapunov N.V. Vosstanovlenie Differentsial'nyh Seche- niy Neuprugogo Rasseyaniya Elektronov iz RFES i HPE Spektrov Berilliya i Ugleroda. Yadernaya Fizika i Inzhiniring. 2015;9—10:498—503. (in Russian).

37. Afanas'ev V.P. i dr. Spektry Harakteristicheskih Poter' Energii Niobiya, Differentsial'nye Secheniya Neuprugih Poter' Energii i Rentgenovskie Fotoelektronnye Spektry s Uglovym Razresheniem. Poverhnost'. Rent- genovskie, Sinhrotronnye I Neytronnye Issledovaniya;2016;1:73—79. (in Russian).

38. Afanas’ev V.P., Gryazev A.S., Kaplya P.S., Andreyeva Yu.O. Intrinsic Excitation Effect for the Al and Mg Samples XPS Analysis. J. Surface Investigation. X-ray, Synchrotron and Neutron Techniques. 2016;10 (1):108—112.

39. Afanas'ev V.P., Kaplya P.S., Lisitsyna E.D. Malouglovoe Priblizhenie i Model' Osval'da–Kaspera– Gauklera v Zadachah Otrazheniya Elektronov ot Tverdyh Tel. Poverhnost'. Rentgenovskie, Sinhrotronnye I Neytronnye Issledovaniya. 2016;3:66—71. (in Russian).

40. Afanas’ev V.P., Efremenko D.S., Kaplya P.S. Analytical and Numerical Methods for Computing Electron Partial Intensities in the Case of Multilayer Systems. J. Electron Spectroscopy and Related Phenomena. 2016;210:16—29.

41. Afanas'ev V.P. i dr. Vosstanovlenie Differentsial'- nyh Secheniy Neuprugogo Rasseyaniya na Osnove Spektrov Rentgenovskoy Fotoelektronnoy Emissii. Poverhnost'. Rentgenovskie, Sinhrotronnye i Neytronnye Issledovaniya. 2016;9:27—32. (in Russian).

42. Kaplya P.S., Afanas’ev V.P. Correction Coeffi- cients in X-ray Photoelectron Spectroscopy. J. Surface Investigation. X-ray, Synchrotron and Neutron Tech. 2016;10 (5):1053—1059.

43. Afanas’ev V.P. e. a. Kilovolt Electron Back-scattering. Z. Phys. B. Cond. Mat. 1994;96:253—259.

44. Werner W.S.M.. Surf. Interface Anal. 1995;23: 737.

45. Hofmann S. Auger and X-ray Photoelectron spectroscopy in material Science. Berlin: Springer-Verlag, 2013.

46. Kaplya P.S. Sozdanie Vysokotochnyh Metodov Analiza Tverdyh Tel na Osnove Rasshifrovki Dannyh Elektronnoy Spektroskopii Metodami Invariantnogo Pogruzheniya: Diss. ... Kand. Fiz.-mat. Nauk. M., 2016. (in Russian).

47. Galindo R.E. e. a. Towards Nanometric Resolution in Multilayer Depth Profiling: a Comparative Study of RBS, SIMS, XPS and GDOES. Analytical and Bioanalytical Chem. 2010;396;8:2725—2740.

48. Lubenchenko A.V. e. a. An XPS Method for Layer Profiling of NbN Thin Films. EPJ Web of Conf. 2017;132:03053.

49. Lubenchenko A.V. i dr. Issledovanie Nanorazmernyh Plenok Niobiya i Nitrida Niobiya Metodom RFES. Radioelektronika, Elektrotekhnika i Energetika: Tezisy XXII Mezhdunar. Nauch.-tekhn. Konf. M.: Izd-vo MPEI, 2016:41. (in Russian).

50. Meledin D. e. a. A 1.3-THz Balanced Waveguide HEB Mixer for the APEX Telescope. IEEE Trans. on Microwave Theory and Tech. 2009;57 (1):89.
---
For citation: Afanas'ev V.P., Budaev V.P., Dedov A.V., Eletskii A.V., Komov A.T., Kulygin V.M., Lubenchenko A.V., Fedorovich S.D., Shi Nguyen-Kuok. The Physical and Technological Problems of Controlled Thermonuclear Fusion. MPEI Vestnik. 2017; 6:31—43. (in Russian). DOI: 10.24160/1993-6982-2017-6-31-43.
Published
2019-01-18
Section
Power engineering (05.14.00)