Методика управления генерацией солнечных батарей по критерию минимизации относительных потерь электроэнергии в электрических сетях
Аннотация
Совокупность технических, политических и экологических факторов стимулирует относительно быстрый рост числа установок распределенной солнечной генерации в мире. Подключение к электрическим сетям солнечных электростанций — одно из наиболее актуальных направлений для развития энергетики. В то же время остро встает вопрос влияния солнечной генерации на режимы распределительных электрических сетей и относительные потери электроэнергии.
Проведены измерения мощностей в электрических сетях с подключенными солнечными панелями объектов здравоохранения города Душанбе Республики Таджикистан. Выполнен анализ влияния распределенной солнечной генерации на потери электроэнергии и конфигурацию графика нагрузки. Выявлена проблема избыточной солнечной генерации в выходные дни, приводящая к перетоку активной мощности от потребителя в энергосистему, в связи с чем меняется конфигурация графика нагрузки и растут относительные потери электроэнергии. Предложен метод расчета, обеспечивающий минимизацию относительных потерь электроэнергии в электрических сетях, что позволяет повысить эффективность работы электросетевой компании в условиях функционирования распределенной солнечной генерации.
Литература
2. Указ Президента Республики Таджикистан № 653 от 24 апреля 2009 г. [Электрон. ресурс] http://medt.tj/documents/main/normativno-pravovie-akti/zakonodatelnie-akti/ru/02503-ru.pdf (дата обращения 02.01.17).
3. Закон Республики Таджикистан № 1018 от 19 сентября 2013 г. «Об энергосбережении и энергоэффективности» [Электрон. ресурс] http://online.zakon.kz/Document/?doc_id=31480243 (дата обращения 02.01.17).
4. Энергетическая компания (ОАХК) «Барки Точик» [Офиц. сайт] http://www.barqitojik.tj (дата обращения 06.01.17).
5. Шведов Г.В., Чоршанбиев С.Р., Холматова М.У. Анализ потерь электроэнергии в городских электрических сетях напряжением 6—10 кВ г. Душанбе Республики Таджикистан // Политехнический вестник. Серия «Инженерные исследования». 2018. № 2 (42). С. 36—42.
6. Годовой отчет ОАО «Россети» и ПАО «Россети» за 2016 г. [Электрон. ресурс] www.rosseti.ru (дата обращения 08.02.17).
7. Сулейман С.Ш. О зависимости солнечного излучения от географических факторов местности // Гелиотехника. 1985. № 5. C. 68—71.
8. Исмоилов Ф.О. Комплексное использование возобновляемых источников энергии для электроснабжения автономных потребителей Республики Таджикистан: дис … канд. техн. наук. М.: Изд-во МЭИ, 2012.
9. Кабутов К. Таджикистан: энергетика и возобновляемые источники энергии [Электрон. ресурс] http://www.rcre.tj (дата обращения 08.02.17).
10. Киргизов А.К. Развитие и оптимизация режимов электроэнергетической системы с распределенными возобновляемыми источниками энергии методами искусственного интеллекта: дис. … канд. техн. наук. Новосибирск: Из-во НГТУ, 2017.
11. Schultz R.P. Impacts of New Technology and Generation and Storage Progress on Power System Stability and Operability // Proc. of DOE ORNL Conf. Research needs for the Effective Integration of New Technologies into the Electric Utility. 1983. Pр. 193—219.
12. Digest № 1996/191. Impact of Embedded Generation on Distribution Networks. London: Institution of Electrical, 1996.
13. Cired. Techn. Theme 4: Dispersed Generation, Management and Utilization of Electricity // Proc. 16 th Intern. Conf. Electricity Distribution. Amsterdam: IEEE Conf. Publ. 2001. No. 482. Pt 1.
14. Pehnt M. e. a. Micro Cogeneration: Towards Decentralized Energy Systems. Berlin, Heidelberg: Springer-Verlag, 2006.
15. Филлипов С.П. Малая энергетика в России // Теплоэнергетика. 2009. № 8. С. 38—44.
16. Лавриненко П.Н., Кабилов З.А. Возможности использования солнечной энергии в Таджикистане. Душанбе: ТаджикИНТИ, 1980.
17. Кабутов К. Возобновляемые источники энергии: проблемы и перспективы использования в Таджикистане // Хартия» Земли и устойчивое развитие Таджикистана: Материалы Междунар. конф. Душанбе, 2011. С. 75—81.
18. Ахмедов Х.М., Каримов Х.С., Кабутов К. Возобновляемые источники энергии в Таджикистане: состояние и перспективы развития. Душанбе: Физ.-техн. ин-т им. С.У. Умарова АН Республики Таджикистан, 2010.
19. Shriram. S.R., Sreejith. S., Siddhartha N. Effect of Distributed Generation on Line Losses and Network Resonances // IEEE Intern. Conf. Advances in Electrical Eng. 2014. Pp. 1—6.
20. Borle L., Dymond M., Nayar C. Development and Testing of a 20-kW Grid Interactive Photovoltaic Power Conditioning System in Western Australia // IEEE Trans. Industry Appl. 1997. V. 33. No. 2. Pp. 502—508.
21. Pyo G., Kang H. Moon S. A New Operation Method for Gridconnected PV System Considering Voltage Regulation in Distribution System // Proc. Conf. IEEE PES GM. 2008. Pp. 1—7.
22. Huajun Yu, Junmin Pan. An Xiang a Multifunctional Grid Connected PV System with Reactive Power Compensation for the Grid // Solar Energy. 2005. V. 79. Pp. 101—106.
23. Sanhueza S.M.R., Vaz A.R. Photovoltaic Solar System Connected to the Electric Power Grid Operating as Active Power Generator and Reactive Power Compensator // Solar Energy. 2010. V. 84. No. 7. Pp. 1310—1317.
24. Turitsyn K., Sulc P., Backhaus S., Chertkov M. Local Control of Reactive Power by Distributed PV Generators // Proc First IEEE Intern. Conf. Smart Grid Communications. 2010. Pp. 79—84.
25. IEEE 1547—2002. Standard for Distributed Resources Interconnected with Electric Power Systems.
26. Gopiya N.S., Khatod D.K., Sharma M.P. Optimal Allocation of Distributed Generation in Distribution System for Loss Reduction // Proc. IACSIT Coimbatore Conf. 2012. V. 28. Pp. 42—46.
27. Shriram S.R., Sreejit. S. Novel 24 Hour Usage of PV Solar Farm for reducing Line Loss // Proc. IEEE International Conf. 2013. Pp. 381—386.
28. Moradi M.H., Abedini M.A Combination of Genetic Algorithm and Particle Swarm Optimization for Optimal DG Location and Sizing in Distribution Systems // Electr. Power and Energy Syst. 2012. V. 34 (1). Pp. 66—74.
29. Kansal S., Kumar V., Tyagi B. Optimal Placement of Different Type of DG Sources in Distribution Networks // Elect. Power and Energy Syst. 2013. V. 53. Pp. 752—760.
30. Khatod D.K., Pant V, Sharma J. Evolutionary Programming Based Optimal Placement of Renewable Distributed Generators // IEEE Trans. Power Syst. 2013. V. 28 (2). Pp. 683—695.
31. Rao R.S., Ravindra K., Satish K., Narasimham S.V.L. Power Loss Minimization in Distribution System Using Network Reconfiguration in the Presence of Distributed Generation // Ibid. Pp. 317—325.
32. García J.A.M., Mena A.J.G. Optimal Distributed Generation Location and Size Using a Modified Teaching–learning Based Optimization Algorithm // Electr. Power and Energy Syst. 2013. V. 50. Pp. 65—75.
33. ОАО «Системавтоматика» [Офиц. сайт] http:// systemavto.tj (дата обращения 05.08.2016).
34. Приказ Министерства энергетики Российской Федерации № 326 от 30 декабря 2008 г. «Об организации в Министерстве энергетики Российской Федерации работы по утверждению нормативов технологических потерь электроэнергии при ее передаче по электрическим сетям».
---
Для цитирования: Шведов Г.В., Чоршанбиев С.Р., Джураев Ш.Дж. Методика управления генерацией солнечных батарей по критерию минимизации относительных потерь электроэнергии в электрических сетях // Вестник МЭИ. 2019. № 1. С. 20—28. DOI: 10.24160/1993-6982-2019-1-20-28.
#
1. Zakon Respubliki Tadzhikistan № 29 ot 10 Maya 2002 g. «Ob Energosberezhenii» [Elektron. Resurs] http:// energocis.ru/wyswyg/file/Zakon/Nacional/Tadghikistan/ZAKON%20RT%20ob%20energosberezhenii.pdf (Data Obrashcheniya 04.01.17). (in Russian).
2. Ukaz Prezidenta Respubliki Tadzhikistan № 653 ot 24 Aprelya 2009 g. [Elektron. Resurs] http://medt.tj/documents/main/normativno-pravovie-akti/zakonoda-telnie-akti/ ru/02503-ru.pdf (Data Obrashcheniya 02.01.17). (in Russian).
3. Zakon Respubliki Tadzhikistan № 1018 ot 19 Sentyabrya 2013 g. «Ob Energosberezhenii i Energoeffektivnosti» [Elektron. Resurs] http://online.zakon.kz/Document/?doc_ id=31480243 (Data Obrashcheniya 02.01.17). (in Russian).
4. Energeticheskaya Kompaniya (OAKHK) «Barki Tochik» [Ofits. Sayt] http://www.barqitojik.tj (Data Obrashcheniya 06.01.17). (in Russian).
5. Shvedov G.V., Chorshanbiev S.R., Kholmatova M.U. Analiz Poter' Elektroenergii v Gorodskikh Elektricheskikh Setyakh Napryazheniem 6—10 kV g. Dushanbe Respubliki Tadzhikistan. Politekhnicheskiy Vestnik. Seriya «Inzhenernye Issledovaniya». 2018;2 (42):36—42. (in Russian).
6. Godovoy Otchet OAO «Rosseti» i PAO «Rosseti» za 2016 g. [Elektron. Resurs] www.rosseti.ru (Data Obrashcheniya 08.02.17). (in Russian).
7. Suleyman S.Sh. O Zavisimosti Solnechnogo Izlucheniya ot Geograficheskikh Faktorov Mestnosti. Geliotekhnika. 1985;5:68—71. (in Russian).
8. Ismoilov F.O. Kompleksnoe Ispol'zovanie Vozobnovlyaemykh Istochnikov Energii dlya Elektrosnabzheniya Avtonomnykh Potrebiteley Respubliki Tadzhikistan: Dis … Kand. Tekhn. Nauk. M.: Izd-vo MEI, 2012. (in Russian).
9. Kabutov K. Tadzhikistan: Energetika i Vozobnovlyaemye Istochniki Energii [Elektron. Resurs] http://www.rcre.tj (Data Obrashcheniya 08.02.17). (in Russian).
10. Kirgizov A.K. Razvitie i Optimizatsiya Rezhimov Elektroenergeticheskoy Sistemy s Raspredelennymi Vozobnovlyaemymi Istochnikami Energii Metodami Iskusstvennogo Intellekta: Dis. … Kand. Tekhn. Nauk. Novosibirsk: Iz-vo NGTU, 2017. (in Russian).
11. Schultz R.P. Impacts of New Technology and Generation and Storage Progress on Power System Stability and Operability. Proc. of DOE ORNL Conf. Research needs for the Effective Integration of New Technologies into the Electric Utility. 1983:193—219.
12. Digest № 1996/191. Impact of Embedded Generation on Distribution Networks. London: Institution of Electrical, 1996.
13. Cired. Techn. Theme 4: Dispersed Generation, Management and Utilization of Electricity. Proc. 16 th Intern. Conf. Electricity Distribution. Amsterdam: IEEE Conf. Publ. 2001;482;1.
14. Pehnt M. e. a. Micro Cogeneration: Towards Decentralized Energy Systems. Berlin, Heidelberg: Springer-Verlag, 2006.
15. Fillipov S.P. Malaya Energetika v Rossii. Teploenergetika. 2009;8:38—44. (in Russian).
16. Lavrinenko P.N., Kabilov Z.A. Vozmozhnosti Ispol'zovaniya Solnechnoy Energii v Tadzhikistane. Dushanbe: TadzhikINTI, 1980. (in Russian).
17. Kabutov K. Vozobnovlyaemye Istochniki Energii: Problemy i Perspektivy Ispol'zovaniya v Tadzhikistane. Khartiya» Zemli i Ustoychivoe Razvitie Tadzhikistana: Materialy Mezhdunar. Konf. Dushanbe, 2011:75—81. (in Russian).
18. Akhmedov Kh.M., Karimov Kh.S., Kabutov K. Vozobnovlyaemyе Istochniki Energii v Tadzhikistane: Sostoyanie i Perspektivy Razvitiya. Dushanbe: Fiz.-tekhn. in-t im. S.U. Umarova AN Respubliki Tadzhikistan, 2010. (in Russian).
19. Shriram. S.R., Sreejith. S., Siddhartha N. Effect of Distributed Generation on Line Losses and Network Resonances. IEEE Intern. Conf. Advances in Electrical Eng. 2014:1—6.
20. Borle L., Dymond M., Nayar C. Development and Testing of a 20-kW Grid Interactive Photovoltaic Power Conditioning System in Western Australia. IEEE Trans. Industry Appl. 1997;33;2:502—508.
21. Pyo G., Kang H. Moon S. A New Operation Method for Gridconnected PV System Considering Voltage Regulation in Distribution System. Proc. Conf. IEEE PES GM. 2008:1—7.
22. Huajun Yu, Junmin Pan. An Xiang a Multifunctional Grid Connected PV System withReactive Power Compensation for the Grid. Solar Energy. 2005;79:101—106.
23. Sanhueza S.M.R., Vaz A.R. Photovoltaic SolarSystem Connected to the Electric Power Grid Operating asActive Power Generator and Reactive Power Compensator. Solar Energy. 2010;84;7:1310—1317.
24. Turitsyn K., Sulc P., Backhaus S., Chertkov M. Local Control of Reactive Power by Distributed PV Generators. Proc First IEEE Intern. Conf. Smart Grid Communications. 2010:79—84.
25. IEEE 1547—2002. Standard for Distributed Resources Interconnected with Electric Power Systems. 26. Gopiya N.S., Khatod D.K., Sharma M.P. Optimal Allocation of Distributed Generation in Distribution System for Loss Reduction. Proc. IACSIT Coimbatore Conf. 2012;28:42—46.
27. Shriram S.R., Sreejit. S. Novel 24 Hour Usage of PV Solar Farm for reducing Line Loss. Proc. IEEE International Conf. 2013:381—386.
28. Moradi M.H., Abedini M.A Combination of Genetic Algorithm and Particle Swarm Optimization for Optimal DG Location and Sizing in Distribution Systems. Electr. Power and Energy Syst. 2012;34 (1):66—74.
29. Kansal S., Kumar V., Tyagi B. Optimal Placement of Different Type of DG Sources in Distribution Networks. Elect. Power and Energy Syst. 2013;53:752—760.
30. Khatod D.K., Pan;Sharma J. Evolutionary Programming Based Optimal Placement of Renewable Distributed Generators. IEEE Trans. Power Syst. 2013;28 (2):683—695.
31. Rao R.S., Ravindra K., Satish K., Narasimham S.V.L. Power Loss Minimization in Distribution System Using Network Reconfiguration in the Presence of Distributed Generation. Ibid: 317—325.
32. García J.A.M., Mena A.J.G. Optimal Distributed Generation Location and Size Using a Modified Teaching–learning Based Optimization Algorithm. Electr. Power and Energy Syst. 2013;50:65—75.
33. OAO «Sistemavtomatika» [Ofits. Sayt] http:// systemavto.tj (Data Obrashcheniya 05.08.2016). (in Russian).
34. Prikaz Ministerstva Energetiki Rossiyskoy Federatsii № 326 ot 30 Dekabrya 2008 g. «Ob Organizatsii v Ministerstve Energetiki Rossiyskoy Federatsii Raboty po Utverzhdeniyu Normativov Tekhnologicheskikh Poter' Elektroenergii pri ee Peredache po Elektricheskim Setyam». (in Russian).
---
For citation: Shvedov G.V., Chorshanbiev S.R., Dzhuraev Sh.D. A Photovoltaic Cell Power Output Control Method Based on the Criterion of Minimizing Relative Power Losses in Electrical Networks. MPEI Vestnik. 2019;1:20—28. (in Russian). DOI: 10.24160/1993-6982¬2019-1-20-28.