Specific Features Pertinent to Designing a System for Rationally Managing the Composition of Hydro Power Plant Units and Prospects for Its Further Development

  • Виталий [Vitaliy] Евгеньевич [E.] Захарченко [Zakharchenko]
Keywords: optimization, rational management, composition of power units, state estimation, group control, efficiency, potential power losses, modeling, rational management of power units composition, rational control problems, rational control prospects, hydraulic power plants

Abstract

The article discusses the key principles of designing a system for rationally managing the composition of hydro power units in the online mode based on the criteria of achieving more efficient and safe operation of a hydro power plant’s (HPP) units.

The hydro power plant efficiency is calculated proceeding from the principle of determining the underproduction of its output from the difference between the generated power and the power that would be generated at the same volume of water and the same head during power unit operation with the optimal efficiency. The safety criterion is based on comparison between the power unit parameters data received from the process control system and those obtained from the model. The unit characterized by the minimum sum of deviations from the model for the entire HPP will be preferred for changing its state. A one else group of criteria is oriented at achieving uniform distribution of load among the HPP units, including the times for which the power units have been in operation, the number of startup and shutdown cycles, the number of transitions through the restricted operation zones, etc. An example illustrating the process of making a multicriteria-based decision is given. For the composition management purposes, the unit selected subject to all three groups of criteria ranked with the operator weighting coefficients has been adopted.

The system general mimic diagram using which the operator manages the composition is described. The following problems concerned with implementation of the system and the prospective lines of future investigations are analyzed:

  • scheduling the changes in the composition of power units for short-term, mid-term and long-term periods of time;
  • optimizing the power distribution function for group control systems, the number of switching operations in the mid- and long-term timeframes, and the effectiveness, safety and state estimation criteria;
  • supplementing the model with calculations of reactive power and power losses in transformers;
  • taking into consideration the water resources and constraints;
  • carrying out predictive state estimation of hydro power units and HPPs;
  • combining the approaches used in the rational management system with the energy management systems of key electric power consumers;
  • motivating the operators; and
  • developing and constructing a fully automatic system for controlling the rational composition of power units.

The solutions for coping with the mentioned problems are fully consistent with the latest worldwide trends in the Industry 4.0 system and can be used for making smart production facilities in the power industry sector.

Information about author

Виталий [Vitaliy] Евгеньевич [E.] Захарченко [Zakharchenko]

Ph.D. (Techn.), Head of Programming Dept., OOO NVF «Sensors. Modules. Systems», e-mail: vitaliy.zakharchenko@sms-a.ru

References

1. Урин В.Д., Кутлер П.П. Энергетические характеристики для оптимизации режима электростанций и энергосистем. М.: Энергия, 1974.
2. Кулабухов С.Ю. Дискретная математика. Шахты: Южно-Российский госуд. инст-т сервиса, 2006.
3. Веников В.А., Журавлев В.Г., Филиппова Т.А. Оптимизация режимов электростанций и энергосистем. М.: Энергоиздат, 1981.
4. Захарченко В.Е. Основной критерий автоматизированного рационального управления составом агрегатов ГЭС // Автоматизация в промышленности. 2017. № 9. С. 10—15.
5. Захарченко В.Е., Сидоров А.А. Оценка достоверности параметров контроля и управления АСУТП. Функционально-ориентированные модели. Lambert Academic Publ., 2012.
6. Уткин Л.В. Анализ риска и принятие решений при неполной информации. СПб.: Наука, 2007.
7. Захарченко В.Е., Сидоров А.А. Влияние функции распределения активной мощности на эффективность ГЭС // Автоматизация в промышленности. 2018. № 1. С. 29—33.
8. Усов С.В. и др. Электрическая часть электростанций. Л.: Энергоатомиздат, 1987.
9. Захарченко В.Е. Технико-экономическое обоснование автоматизированной системы рационального управления составом агрегатов ГЭС // Автоматизация в промышленности. 2017. № 11. С. 11—15.
10. ГОСТ Р ИСО 50001—2012. Системы энергетического менеджмента. Требования и руководство по применению.
11. Перфильева Е.Н. Повышение энергоэффективности горных предприятий на основе управления энергетическими ресурсами: дисс. … канд. техн. наук. М.: Московский гос. горный ун-т, 2007.
12. Кокшаров В.А. Комплексное управление перспективным энергопотреблением металлургических предприятий: дисс. …. доктора экон. наук. Екатеринбург: Уральский федер. ун-т им. первого Президента России Б.Н. Ельцина, 2016.
13. Страхова Н. А., Лебединский П.А. Имитационное моделирование как инструмент анализа энергоэффективности теплогенерирующих предприятий // Инженерный вестник Дона. 2013. Т. 4. № 4. С. 1—6.
14. Филиппова Т.А., Секретарев Ю.А. Учет эксплуатационного состояния при управлении составом агрегатов в АСУ ТП // Известия СОАН СССР. 1977. № 1. С. 132—136.
---
Для цитирования: Захарченко В.Е. Особенности реализации системы рационального управления составом агрегатов гидроэлектростанций и перспективы ее развития // Вестник МЭИ. 2019. № 1. С. 98—107. DOI: 10.24160/1993-6982-2019-1-98-107.
#
1. Urin V.D., Kutler P.P. Energeticheskie Harakteristiki dlya Optimizatsii Rezhima Elektrostantsiy i Energosistem. M.: Energiya, 1974. (in Russian).
2. Kulabuhov S.Yu. Diskretnaya Matematika. Shahty: Yuzhno-Rossiyskiy Gosud. Inst-t Servisa, 2006. (in Russian).
3. Venikov V.A., Zhuravlev V.G., Filippova T.A. Optimizatsiya Rezhimov Elektrostantsiy i Energosistem. M.: Energoizdat, 1981. (in Russian).
4. Zaharchenko V.E. Osnovnoy Kriteriy Avtomatizirovannogo Ratsional'nogo Upravleniya Sostavom Agregatov GES. Avtomatizatsiya v Promyshlennosti. 2017;9:10—15. (in Russian).
5. Zaharchenko V.E., Sidorov A.A. Otsenka Dostovernosti Parametrov Kontrolya i Upravleniya ASUTP. Funktsional'no-orientirovannye modeli. Lambert Academic Publ., 2012. (in Russian).
6. Utkin L.V. Analiz Riska i Prinyatie Resheniy pri Nepolnoy Informatsii. SPb.: Nauka, 2007. (in Russian).
7. Zaharchenko V.E., Sidorov A.A. Vliyanie Funktsii Raspredeleniya Aktivnoy Moshchnosti na Effektivnost' GES. Avtomatizatsiya v Promyshlennosti. 2018;1:29—33. (in Russian).
8. Usov S.V. i dr. Elektricheskaya Chast' Elektrostantsiy. L.: Energoatomizdat, 1987. (in Russian).
9. Zaharchenko V.E. Tekhniko-ekonomicheskoe Obosnovanie Avtomatizirovannoy Sistemy Ratsional'nogo Upravleniya Sostavom Agregatov GES. Avtomatizatsiya v Promyshlennosti. 2017;11:11—15. (in Russian).
10. GOST R ISO 50001—2012. Sistemy Energeticheskogo Menedzhmenta. Trebovaniya i Rukovodstvo po Primeneniyu. (in Russian).
11. Perfil'eva E.N. Povyshenie Energoeffektivnosti Gornyh Predpriyatiy na Osnove Upravleniya Energeticheskimi Resursami: Diss. … Kand. Tehn. Nauk. M.: Moskovskiy Gos. Gornyy Un-t, 2007. (in Russian).
12. Koksharov V.A. Kompleksnoe Upravlenie Perspektivnym Energopotrebleniem Metallurgicheskih Predpriyatiy: Diss. …. Doktora Ekon. Nauk. Ekaterinburg: Ural'skiy Feder. Un-t im. Pervogo Prezidenta Rossii B.N. El'tsina, 2016. (in Russian).
13. Strahova N. A., Lebedinskiy P.A. Imitatsionnoe Modelirovanie kak Instrument Analiza Energoeffektivnosti Teplogeneriruyushchih Predpriyatiy. Inzhenernyy Vestnik Dona. 2013;4;4:1—6. (in Russian).
14. Filippova T.A., Sekretarev Yu.A. Uchet Ekspluatatsionnogo Sostoyaniya pri Upravlenii Sostavom Agregatov v ASU TP. Izvestiya SOAN SSSR. 1977;1: 132—136. (in Russian).
---
For citation: Zakharchenko V.Е. Specific Features Pertinent to Designing a System for Rationally Managing the Composition of Hydro
Power Plant Units and Prospects for Its Further Development. MPEI Vestnik. 2019;1:98—107. (in Russian). DOI: 10.24160/1993-6982-2019-1-98-107.
Published
2018-02-08
Section
Automation and Control of Technological Processes and Production (05.13.06)