The Electrothermal Model and Operating Modes of an Induction Crucible Furnace with a Conducting Ferromagnetic Crucible

  • Максим [Maksim] Андреевич [A.] Федин [Fedin]
  • Александр [Aleksandr] Борисович [B.] Кувалдин [Kuvaldin]
  • Алексей [Aleksey] Олегович [O.] Кулешов [Kuleshov]
  • Святослав [Svyatoslav] Владимирович [V.] Ахметьянов [Akhmet′yanov]
  • Сергей [Sergey] Семенович [S.] Кондрашов [Kondrashov]
Keywords: induction crucible furnace, ferromagnetic conducting crucible, electrothermal model, electrical characteristics

Abstract

A non-linear mathematical model intended for calculating the electrical and thermal characteristics of an induction crucible furnace with a conducting ferromagnetic crucible is developed using the finite element method. The furnace electrical characteristics as functions of the inductor frequency, temperature, and current are studied. The non-stationary thermal problem is solved. The mathematical model has been implemented in the ELCUT software package.

Three furnace operation modes typical for melting of metals are identified and investigated: cold, in which the ferromagnetic crucible temperature is below the Curie point (723 °C), and the metal loaded into the crucible is in the form of lump charge; transitional, in which the crucible temperature is below the Curie point, and the metal inside the crucible is in liquid state; and hot, in which the crucible temperature is above the Curie point, and the crucible is in nonmagnetic state.

The resistance and inductance of the “inductor–charge” system as functions of the frequency, temperature and current are obtained in the Simulink/ Matlab environment.

An experimental bench consisting of an induction crucible furnace with a ferromagnetic conducting steel crucible, a high-frequency adjustable transistor power supply, a microprocessor control system, and a data acquisition system is developed. An experiment on a laboratory furnace equipped with a steel crucible and with an aluminum alloy charge was carried out. The experimental results are in good agreement with the mathematical simulation results, which confirms adequacy of the mathematical model.

Information about authors

Максим [Maksim] Андреевич [A.] Федин [Fedin]

Ph.D. (Techn.), Assistant Professor of Electric Supply of Industrial Enterprises and Electrical Engineering Dept., NRU MPEI, e-mail: FedinMA@mail.ru

Александр [Aleksandr] Борисович [B.] Кувалдин [Kuvaldin]

Dr.Sci. (Techn.), Professor of Electric Supply of Industrial Enterprises and Electrical Engineering Dept., NRU MPEI, e-mail: KuvaldinAB@mpei.ru

Алексей [Aleksey] Олегович [O.] Кулешов [Kuleshov]

Ph.D. (Techn.), Assistant of Electric Supply of Industrial Enterprises and Electrical Engineering Dept., NRU MPEI, e-mail: KuleschovAO@yandex.ru

Святослав [Svyatoslav] Владимирович [V.] Ахметьянов [Akhmet′yanov]

Ph.D.-student of Electric Supply of Industrial Enterprises and Electrical Engineering Dept., NRU MPEI, e-mail: ahmetyanov91@yandex.ru

Сергей [Sergey] Семенович [S.] Кондрашов [Kondrashov]

Leading Engineer of Electric Supply of Industrial Enterprises and Electrical Engineering Dept., NRU MPEI, e-mail: sskondrashov@yandex.ru

References

1. Вайнберг А.М. Индукционные плавильные печи. М.: Энергия, 1967.
2. Фарбман С.А., Колобнев И.Ф. Индукционные печи для плавки металлов и сплавов. М.: Металлургия, 1968.
3. Установки индукционного нагрева / под ред. А.Е. Слухоцкого. Л.: Энергоиздат, 1981.
4. Sassa Kensuke, Kuwabara Mamoru, Yasuda Tadayoshi, Asai Shigeo. Experimental Measurements and Theoretical Analysis of Induction Heating by Use of a Conductive Crucible // Tetsu-To-Hagane J. Iron and Steel Institute of Japan. 1991. V. 77. Iss. 9. Pp. 1442—1449.
5. Szkliniarz W., Szkliniarz A. The Characteristics of TiAl-based Alloys Melted in Graphite Crucibles // Materials Sci. and Techn. 2017. No. 12. Pp. 1—9.
6. Patidar B., Hussain M., Jha S., Sharma A., Tiwari A. Analytical, Numerical and Experimental Analysis of Induction Heating of Graphite Crucible for Melting of Non-magnetic Materials // IET Electric Power Appl. 2017. V. 11. Iss. 3. Pp. 342—351.
7. Кувалдин A.Б., Федин M.A., Кулешов A.O., Жмурко И.Е. Разработка релейных систем управления мощностью и температурным режимом индукционных тигельных печей с использованием физического моделирования // Форум научных материалов. 2017. Вып. 906. С. 8—15.
8. Федин M.A., Кувалдин A.Б., Кулешов A.O., Генералов И.M. Экспериментальное исследование физической модели индукционной тигельной печи и разработка системы управления // XI Междунар. форум по стратегической технологии (IFOST): Сборник трудов. Ч. 2. Новосибирск, 2016. С. 68—72.
9. Федин М.А., Кувалдин А.Б., Кулешов А.О. Выбор методики расчета и исследование электрических характеристик индукционных тигельных печей с проводящим тиглем // Вестник МЭИ. 2017. № 3. С. 77—86.
10. Кувалдин А.Б. Индукционный нагрев ферромагнитной стали. М.: Энергоатомиздат, 1988.
11. Федин М.А., Кувалдин А.Б., Кулешов А.О., Жмурко И.Е., Ахметьянов С.В. Расчет и исследование электрических характеристик индукционных тигельных печей с немагнитным проводящим тиглем // Всеросс. науч.-практ. конф. по экологии и безопасности в техносфере: актуальные проблемы и решения. 2018. Т. 115. Вып.1.
12. Волков Е.А. Численные методы. М.: Физматлит, 2003.
---
Для цитирования: Федин М.А., Кувалдин А.Б., Кулешов А.О., Ахметьянов С.В., Кондрашов С.С. Электротепловая модель и режимы работы индукционной тигельной печи с проводящим ферромагнитным тиглем // Вестник МЭИ. 2019. № 5. С. 91—100. DOI: 10.24160/1993-6982-2019-5-91-100.
---
Работа выполнена при поддержке: Министерства науки и высшего образования Российской Федерации (инициативный научный проект № 8.9608.2017/БЧ)
#
1. Vaynberg A.M. Induktsionnye Plavil'nye Pechi. M.: Energiya, 1967. (in Russian).
2. Farbman S.A., Kolobnev I.F. Induktsionnye Pechi dlya Plavki Metallov i Splavov. M.: Metallurgiya, 1968. (in Russian).
3. Ustanovki Induktsionnogo Nagreva. Pod Red. A.E. Slukhotskogo. L.: Energoizdat, 1981. (in Russian).
4. Sassa Kensuke, Kuwabara Mamoru, Yasuda Tadayoshi, Asai Shigeo. Experimental Measurements and Theoretical Analysis of Induction Heating by Use of a Conductive Crucible. Tetsu-To-Hagane J. Iron and Steel Institute of Japan. 1991;77;9:1442—1449.
5. Szkliniarz W., Szkliniarz A. The Characteristics of TiAl-based Alloys Melted in Graphite Crucibles. Materials Sci. and Techn. 2017;12:1—9.
6. Patidar B., Hussain M., Jha S., Sharma A., Tiwari A. Analytical, Numerical and Experimental Analysis of Induction Heating of Graphite Crucible for Melting of Non-magnetic Materials. IET Electric Power Appl. 2017; 11;3:342—351.
7. Kuvaldin A.B., Fedin M.A., Kuleshov A.O., Zhmurko I.E. Razrabotka Releynykh Sistem Upravleniya Moshchnost'yu i Temperaturnym Rezhimom Induktsionnykh Tigel'nykh Pechey s Ispol'zovaniem Fizicheskogo Modelirovaniya. Forum Nauchnykh Materialov. 2017;906: 8—15. (in Russian).
8. Fedin M.A., Kuvaldin A.B., Kuleshov A.O., Generalov I.M. Eksperimental'noe Issledovanie Fizicheskoy Modeli Induktsionnoy Tigel'noy Pechi i Razrabotka Sistemy Upravleniya. XI Mezhdunar. Forum po Strategicheskoy Tekhnologii (IFOST): Sbornik Trudov. Ch. 2. Novosibirsk, 2016:68—72. (in Russian).
9. Fedin M.A., Kuvaldin A.B., Kuleshov A.O. Vybor Metodiki Rascheta i Issledovanie Elektricheskikh Kharakteristik Induktsionnykh Tigel'nykh Pechey s Provodyashchim Tiglem. Vestnik MEI. 2017;3:77—86. (in Russian).
10. Kuvaldin A.B. Induktsionnyy Nagrev Ferromagnitnoy Stali. M.: Energoatomizdat, 1988. (in Russian).
11. Fedin M.A., Kuvaldin A.B., Kuleshov A.O., Zhmurko I.E., Akhmet'yanov S.V. Raschet i Issledovanie Elektricheskikh Kharakteristik Induktsionnykh Tigel'nykh Pechey s Nemagnitnym Provodyashchim Tiglem. Vseross. Nauch.-prakt. Konf. po Ekologii i Bezopasnosti v Tekhnosfere: Aktual'nye Problemy i Resheniya. 2018;115;1. (in Russian).
12. Volkov E.A. Chislennye Metody. M.: Fizmatlit, 2003. (in Russian).
---
For citation: Fedin M.A., Kuvaldin A.B., Kuleshov A.O., Akhmet′yanov S.V., Kondrashov S.S. The Electrothermal Model and Operating Modes of an Induction Crucible Furnace with a Conducting Ferromagnetic Crucible. Bulletin of MPEI. 2019;5:91—100. (in Russian). DOI: 10.24160/1993-6982-2019-5-91-100.
---
The work is executed at support: Ministry of Science and Higher Education of the Russian Federation (Initiative Research Project No. 8.9608.2017/БЧ)
Published
2019-03-26
Section
Electrotechnology (05.09.10)