The Generalized Continuous Model of a Bridgeless Power Factor Corrector

  • Марина [Marina] Аркадьевна [A.] Амелина [Amelina]
  • Сергей [Sergey] Александрович [A.] Амелин [Amelin]
  • Сергей [Sergey] Владимирович [V.] Дроздецкий [Drozdetsky]
Keywords: switch-mode power supplies, buck-boost voltage converter, state-space averaging method (SSAM), continuous model, power factor correction (PFC), continuous conduction mode (CCM), discontinuous conduction mode (DCM), Micro-Cap

Abstract

An approach to constructing the continuous model of a new converter topology, namely, a bridgeless power factor corrector (bridgeless PFC) on the basis of a buck-boost voltage converter is considered.

The reasons substantiating the need to develop new topologies of voltage converters suitable for use as power factor correctors are shown.

A general approach to constructing the mathematical models of switched-mode voltage converters is presented, and the transition from switched models of these devices to continuous ones is substantiated. The range of tasks that can be solved using continuous models is formulated, and the limitations inherent in models of this type are pointed out.

The continuous model of a bridgeless PFC is constructed in a stage-wise manner using the state-space averaging method. It is shown that the solution of this problem leads to construction of two models representing different operation modes of the buck-boost converter's choke: one is for its operation with continuous currents, and the other is for its operation with discontinuous currents. A method that allows a universal model suitable for use in any of these modes to be constructed is considered.

An example of constructing a universal model for being used in the Micro-Cap circuit simulation program is given. The results obtained using the full switched model are compared with those obtained using the developed continuous model. It is shown that the results obtained using these models are very close to each other for the choke operating with both continuous and discontinuous currents. The ability of the used voltage converter topology to operate with both positive and negative power supply voltage is illustrated. A sine-wave shape of the consumed current during operation with discontinuous choke currents in applying an AC network voltage to its input — an important property of a bridgeless PFC on the basis of a buck-boost voltage converter — has been demonstrated.

The obtained results confirm the adequacy of the developed model and the possibility of using it for obtaining the static characteristics of a bridgeless PFC. In addition, the developed nonlinear continuous model can be used for obtaining the converter’s frequency responses. The model is automatically linearized by means of circuit simulation programs. Therefore, the presented model can be used for analyzing and ensuring the stability of closed-loop control systems that will include the considered voltage converter.

Information about authors

Марина [Marina] Аркадьевна [A.] Амелина [Amelina]

Ph.D. (Techn.), Assistant Professor of Electronics and Microprocessor Technology Dept., Branch of NRU MPEI in Smolensk, e-mail: amelina.marina@gmail.com

Сергей [Sergey] Александрович [A.] Амелин [Amelin]

Ph.D. (Techn.), Assistant Professor of Electronics and Microprocessor Technology Dept., Branch of NRU MPEI in Smolensk, e-mail: amlmtr@gmail.com

Сергей [Sergey] Владимирович [V.] Дроздецкий [Drozdetsky]

Assistant of Electronics and Microprocessor Technology Dept., Branch of NRU MPEI in Smolensk, e-mail: thrush007@yandex.ru

References

1. Vorperian V. Simplified Analysis of PWM Converters Using Model of PWM Switch: Pt. I and II // IEEE Trans. Aerospace and Electronic Syst. 1990. V. 26. No. 3. Pp. 490—505.
2. Ben-Yaakov S. Generalized Switched Inductor Model (GSIM): Accounting for Conduction Losses // IEEE Trans. Aerospace and Electronic Syst. 2002. V. 38. No. 2. Pp. 681—687.
3. Davoudi A., Jatskevich J., Rybel T. Numerical State-space Average value Modeling of PWM DC-DC Converters Operating in DCM and CCM // IEEE Trans. Power Electronics. 2006. V. 21. No. 4. Pp. 1003—1012.
4. Giesselmann M.G. Averaged and Cycle by Cycle Switching Models for Buck, Boost, Buck-boost and Cuk Converters with Common Average Switch Model // Proc. Thirty-Second Intersociety Energy Conversion Eng. Conf. 1997. V. 1. Pp. 337—341.
5. Амелина М.А., Амелин С.А., Фролков О.А. Усовершенствование непрерывной модели импульсного регулятора напряжения // Вестник МЭИ. 2016. № 2. С. 70—74.
6. Поликарпов А.Г. Метод создания новых структур импульсных регуляторов напряжения // Электропитание. 1993. Вып. 2. С. 63—67.
7. Поликарпов А.Г., Третьякова М.А. Анализ динамических характеристик однотактного магнитносвязанного преобразователя напряжения // Электросвязь. 1996. № 2. C. 40—43.
8. Chen J., Maksimovic D., Erickson R. Analysis and Design of a Low-Stress Buck-boost Converter in Universal-input PFC Applications // IEEE Trans. Power Electronics. 2006. V. 21. No. 2. Pp. 320—329.
9. Yang J.-W., Do H.-L. Bridgeless SEPIC Converter with a Ripple-free Input Current // IEEE Trans. Power Electronics. 2013. V. 28. No. 7. Pp. 3388—3394.
10. Evzelman M., Ben-Yaakov S. Simulation of Hybrid Converters by Average Models // IEEE Trans. Industry Applications. 2014. V. 50. No. 2. Pp. 1106—1113.
11. Winter M., Moser S., Schoenewolf S., Taube J., Herzog H.-G. Average Model of a Synchronous Half- bridge DC/DC Converter Considering Losses and Dynamics // Proc. 11th Intern. Modelica Conf. Versailles, 2015. Pp. 479—484.
12. Азаренкова Е.Г., Морунов Д.Н., Амелин С.А., Амелина М.А. Коммутируемый однотактный преобразователь напряжения и анализ его динамических характеристик // Информационные технологии, энергетика и экономика: Сборник трудов XII Междунар. науч.-техн. конф. студентов и аспирантов. 2015. Т. 2. С. 3—7.
13. Murthy A., Badawy M. State Space Averaging Model of a Dual Stage Converter in Discontinuous Conduction Mode // IEEE 18th Workshop on Control and Modeling for Power Electronics. 2017. Pp. 1—7.
14. Пат. № 2541910 РФ. Однофазный безмостовой корректор коэффициента мощности / С.В. Дроздецкий, И.А. Кругликов, А.О. Ширяев, И.В. Якименко // Бюл. изобрет. 2015. № 5.
15. Дроздецкий С.В., Кругликов И.А., Ширяев А.О., Якименко И.В. Безмостовой корректор коэффициента мощности для автономных энергосистем // Практическая силовая электроника. 2017. № 2 (66). С. 32—37.
16. Миддлбрук Р.Д. Малосигнальное моделирование ключевых преобразователей мощности с широтно-импульсным регулированием // ТИИЭР. 1988. Т. 76. № 4. С. 46—59.
17. Поликарпов А.Г., Сергиенко Е.Ф. Однотактные преобразователи напряжения в устройствах электропитания РЭА. М.: Радио и связь, 1989.
---
Для цитирования: Амелина М.А., Амелин С.А., Дроздецкий С.В. Обобщенная непрерывная модель безмостового корректора коэффициента мощности // Вестник МЭИ. 2019. № 6. С. 91—100. DOI: 10.24160/1993-6982-2019-6-91-100.
---
Работа выполнена при поддержке: РФФИ (проект № 19-07-00343 А)
#
1. Vorperian V. Simplified Analysis of PWM Converters Using Model of PWM Switch: Pt. I and II. IEEE Trans. Aerospace and Electronic Syst. 1990;26;3: 490—505.
2. Ben-Yaakov S. Generalized Switched Inductor Model (GSIM): Accounting for Conduction Losses. IEEE Trans. Aerospace and Electronic Syst. 2002;38;2:681—687.
3. Davoudi A., Jatskevich J., Rybel T. Numerical State-space Average value Modeling of PWM DC-DC Converters Operating in DCM and CCM. IEEE Trans. Power Electronics. 2006;21;4:1003—1012.
4. Giesselmann M.G. Averaged and Cycle by Cycle Switching Models for Buck, Boost, Buck-boost and Cuk Converters with Common Average Switch Model. Proc. Thirty-Second Intersociety Energy Conversion Eng. Conf. 1997;1:337—341.
5. Amelina M.A., Amelin S.A., Frolkov O.A. Usovershenstvovanie Nepreryvnoy Modeli Impul'snogo Regulyatora Napryazheniya. Vestnik MEI. 2016;2:70—74. (in Russian).
6. Polikarpov A.G. Metod Sozdaniya Novykh Struktur Impul'snykh Regulyatorov Napryazheniya. Elektropitanie. 1993;2:63—67. (in Russian).
7. Polikarpov A.G., Tret'yakova M.A. Analiz Dinamicheskikh Kharakteristik Odnotaktnogo Magnitnosvyazannogo Preobrazovatelya Napryazheniya. Elektrosvyaz'. 1996;2:40—43. (in Russian).
8. Chen J., Maksimovic D., Erickson R. Analysis and Design of a Low-Stress Buck-boost Converter in Universal-input PFC Applications. IEEE Trans. Power Electronics. 2006;21;2:320—329.
9. Yang J.-W., Do H.-L. Bridgeless SEPIC Converter with a Ripple-free Input Current. IEEE Trans. Power Electronics. 2013;28;7:3388—3394.
10. Evzelman M., Ben-Yaakov S. Simulation of Hybrid Converters by Average Models. IEEE Trans. Industry Applications. 2014;50;2:1106—1113.
11. Winter M., Moser S., Schoenewolf S., Taube J., Herzog H.-G. Average Model of a Synchronous Half- bridge DC/DC Converter Considering Losses and Dynamics. Proc. 11th Intern. Modelica Conf. Versailles, 2015:
479—484.
12. Azarenkova E.G., Morunov D.N., Amelin S.A., Amelina M.A. Kommutiruemyy Odnotaktnyy Preobrazovatel' Napryazheniya i Analiz Ego Dinamicheskikh Kharakteristik. Informatsionnye Tekhnologii, Energetika i Ekonomika: Sbornik Trudov XII Mezhdunar. Nauch.tekhn. Konf. Studentov i Aspirantov. 2015; 2:3—7. (in Russian).
13. Murthy A., Badawy M. State Space Averaging Model of a Dual Stage Converter in Discontinuous Conduction Mode. IEEE 18th Workshop on Control and Modeling for Power Electronics. 2017:1—7.
14. Pat. № 2541910 RF. Odnofaznyy Bezmostovoy Korrektor Koeffitsienta Moshchnosti / S.V. Drozdetskiy, I.A. Kruglikov, A.O. SHiryaev, I.V. Yakimenko. Byul. Izobret. 2015;5. (in Russian).
15. Drozdetskiy S.V., Kruglikov I.A., Shiryaev A.O., Yakimenko I.V. Bezmostovoy Korrektor Koeffitsienta Moshchnosti dlya Avtonomnykh Energosistem. Prakticheskaya Silovaya Elektronika. 2017;2 (66):32—37. (in Russian).
16. Middlbruk R.D. Malosignal'noe Modelirovanie Klyuchevykh Preobrazovateley Moshchnosti s Shirotnoimpul'snym Regulirovaniem. TIIER. 1988;76;4:46—59. (in Russian).
17. Polikarpov A.G., Sergienko E.F. Odnotaktnye Preobrazovateli Napryazheniya v Ustroystvakh Elektropitaniya REA. M.: Radio i svyaz', 1989. (in Russian).
---
For citation: Amelina M.A., Amelin S.A., Drozdetsky S.V. The Generalized Continuous Model of a Bridgeless Power Factor Corrector. Bulletin of MPEI. 2019;6:91—100. (in Russian). DOI: 10.24160/1993-6982-2019-6-91-100.
---
The work is executed at support: RFBR (project No. 19-07-00343 А)
Published
2019-02-28
Section
Power Electronics (05.09.12)