The Dynamic Response of a Building Model with Decreasing Stiffness during Long-Period Earthquakes

  • Владимир [Vladimir] Павлович [P.] Радин [Radin]
  • Елена [Elena] Викторовна [V.] Позняк [Poznyak]
  • Ольга [Olga] Валерьевна [V.] Новикова [Novikova]
Keywords: long-period seismic load, accelerograms, dynamic analysis, hysteresis with decrease of stiffness

Abstract

Long-period earthquakes with dominant periods of about 2...5 s occur in the far zone and usually have low intensity. However, such earthquakes can cause devastating consequences for structures if, first, their vibration frequencies are close to the lowest natural frequencies of the structures, and, second, if they persist for a sufficiently long time.

The aim of this work is to simulate a situation in which low-intensity seismic vibration acts on a structure for a long time with close-to-resonant frequencies. It leads to a long-term oscillatory process with large amplitudes. Such conditions can give rise to cyclic elastic-plastic deformation of the system with accumulation of damages, with degradation of stiffness and with decreasing of natural frequencies. If during a long-period earthquake the prevailing seismic load frequencies also decrease, the structure is “self-tuned” to resonance, a circumstance that aggravates the seismic load consequences.

The dynamic response of a system with time-dependent decreasing of stiffness for long-period seismic oscillations was analyzed for the first time. The Tohoku earthquake accelerogram recorded in Tokyo on March 11, 2011 at the TKY017 station was taken as the seismic load. The prevailing seismic load frequencies in the selected record decrease from 0.83 Hz to 0.3 Hz.

Displacements and their standard deviations for systems with the initial natural frequencies equal to 0.83 Hz, 1 Hz, and 0.5 Hz were obtained and analyzed. All calculations, including preprocessing of seismic load data, implementation of the hysteresis algorithm with decrease of stiffness, integration of the motion equations, and analysis of the obtained results were all accomplished in the Matlab software system environment.

Information about authors

Владимир [Vladimir] Павлович [P.] Радин [Radin]

Ph.D. (Techn.), Professor of Robotics, Mechatronics and Machines Dynamics and Strength Dept., NRU MPEI, e-mail: RadinVP@mpei.ru

Елена [Elena] Викторовна [V.] Позняк [Poznyak]

Ph.D.  (Techn.),  Assistant Professor  of  Robotics,  Mechatronics  and  Machines  Dynamics  and Strength Dept., NRU MPEI, e-mail: PozniakYV@mpei.ru

Ольга [Olga] Валерьевна [V.] Новикова [Novikova]

Ph.D.  (Techn.),  Assistant Professor  of  Robotics,  Mechatronics  and  Machines  Dynamics  and Strength Dept., NRU MPEI, e-mail: NovikovaOV@mpei.ru

References

1. Nazarov, Y., Travush V. Длиннопериодные сейсмические воздействия и их влияние на прочность конструкций высотных зданий // Intern. J. Computational Civil and Structural Eng. 2018. No. 14. Pp. 14—26.
2. Lee W.H.K., Kanamori H., Jennings P., Kisslinger C. International Handbook of Earthquake and Engineering Seismology. Pt. B. N.-Y., London: Academic Press, 2003.
3. Çelebi M., Kashima T., Ghahari S. F., Abazarsa F., Taciroglu E. Responses of a Tall Building with US Сode-type Instrumentation in Tokyo, Japan — to Events Before, During and After the Tohoku Earthquake of March 11, 2011 // Earthquake Spectra. 2011. V. 32. Iss. 1. Pp. 497—522.
4. Позняк Е.В., Радин В.П., Новикова О.В. Частотно-временной анализ акселерограмм природных землетрясений // Вестник МЭИ. 2019. № 5. С. 135—141.
5. Campian C., Nagy Z., Pop M. Behavior of Fully Encased Steel-Concrete Composite Columns Subjected to Monotonic and Cyclic Loading // Proc. Intern. Sci. Conf. Urban Civil Eng. and Municipal Facilities. 2015. V. 117. Pp. 444—456.
6. Pimanmas A., Chaimahawan P. Cyclic Shear Resistance of Expanded Beam-Column Joint // Proc. Twelfth East Asia-Pacific Conf. Structural Eng. and Construction. 2011. V. 14. Pp. 1292—1299.
7. Bharti R., Chidambaram R.S., Kwatra N. Influence of Fiber Reinforced Concrete on Plastic Behavior on Exterior Beam Column Joint under Cyclic Loading // Proc. XI Intern. Symp. Plasticity and Impact Mechanics. 2017. V. 173. Pp. 1122—1129.
8. Nagel S., Knodel P., Ummenhofer T. Testing of Ultra-low Cycle Fatique at Complex Loading Scenarios // Procedia Structural Integrity. 2017. V. 5. Pp. 1377—1384.
9. Combescure C., Dumontet H., Voldoire F. Homogenised Constitutive Model Coupling Damage and Debonding for Reinforced Concrete Structures Under Cyclic Solicitations // Intern. J. Solids and Structures. 2013. V. 50. Pp. 3861—3874.
10. Zhoudao L.U., Lei S.U., Jiangtao Y.U. Experimental Study on the Seismic Behaviour of Strengthened Concrete Column-beam Joints by Simulated Earthquake // Procedia Eng. 2011. V. 14. Pp. 1871—1878.
11. Болотин В.В., Чирков В.П. Радин В.П., Трифонов О.В. Исследование упругопластического деформирования многоэтажного каркасного здания при интенсивных сейсмических воздействиях // Известия вузов. Серия «Строительство». 2001. № 5. С. 11—17.
12. Болотин В.В., Радин В.П., Чирков В.П. Исследование поведения зданий и сооружений со снижением жесткости при сейсмических воздействиях. Известия высших учебных заведений. Серия «Строительство». 2003. № 7 (535). С. 6—10.
---
Для цитирования: Радин В.П., Позняк Е.В., Новикова О.В. Реакция модели здания со снижением жесткости на длиннопериодные сейсмические воздействия // Вестник МЭИ. 2019. № 6. С. 124—130. DOI: 10.24160/1993-6982-2019-6-124-130.
#
1. Nazarov, Y., Travush V. Dlinnoperiodnye Seysmicheskie Vozdeystviya i Ikh Vliyanie na Prochnost' Konstruktsiy Vysotnykh Zdaniy. Intern. J. Computational Civil and Structural Eng. 2018;14:14—26. (in Russian).
2. Lee W.H.K., Kanamori H., Jennings P., Kisslinger C. International Handbook of Earthquake and Engineering Seismology. Pt. B. N.-Y., London: Academic Press, 2003.
3. Çelebi M., Kashima T., Ghahari S. F., Abazarsa F., Taciroglu E. Responses of a Tall Building with US Сode-type Instrumentation in Tokyo, Japan — to Events Before, During and After the Tohoku Earthquake of March 11, 2011. Earthquake Spectra. 2011;32;1:497—522.
4. Poznyak E.V., Radin V.P., Novikova O.V. Chastotno-vremennoy Analiz Akselerogramm Prirodnykh Zemletryaseniy. Vestnik MEI. 2019;5:135—141. (in Russian).
5. Campian C., Nagy Z., Pop M. Behavior of Fully Encased Steel-Concrete Composite Columns Subjected to Monotonic and Cyclic Loading. Proc. Intern. Sci. Conf. Urban Civil Eng. and Municipal Facilities. 2015;117: 444—456.
6. Pimanmas A., Chaimahawan P. Cyclic Shear Resistance of Expanded Beam-Column Joint. Proc. Twelfth East Asia-Pacific Conf. Structural Eng. and Construction. 2011;14:1292—1299.
7. Bharti R., Chidambaram R.S., Kwatra N. Influence of Fiber Reinforced Concrete on Plastic Behavior on Exterior Beam Column Joint under Cyclic Loading. Proc. XI Intern. Symp. Plasticity and Impact Mechanics. 2017;173:1122—1129.
8. Nagel S., Knodel P., Ummenhofer T. Testing of Ultra-low Cycle Fatique at Complex Loading Scenarios. Procedia Structural Integrity. 2017;5:1377—1384.
9. Combescure C., Dumontet H., Voldoire F. Homogenised Constitutive Model Coupling Damage and Debonding for Reinforced Concrete Structures Under Cyclic Solicitations. Intern. J. Solids and Structures. 2013; 50:3861—3874.
10. Zhoudao L.U., Lei S.U., Jiangtao Y.U. Experimental Study on the Seismic Behaviour of Strengthened Concrete Column-beam Joints by Simulated Earthquake. Procedia Eng. 2011;14:1871—1878.
11. Bolotin V.V., Chirkov V.P. Radin V.P., Trifonov O.V. Issledovanie Uprugoplasticheskogo Deformirovaniya Mnogoetazhnogo Karkasnogo Zdaniya pri Intensivnykh Seysmicheskikh Vozdeystviyakh. Izvestiya Vuzov. Seriya «Stroitel'stvo». 2001;5: 1—17. (in Russian).
12. Bolotin V.V., Radin V.P., Chirkov V.P. Issledovanie Povedeniya Zdaniy i Sooruzheniy so Snizheniem Zhestkosti pri Seysmicheskikh Vozdeystviyakh. Izvestiya Vysshikh Uchebnykh Zavedeniy. Seriya «Stroitel'stvo». 2003;7 (535):6—10. (in Russian).
---
For citation: Radin V.P., Poznyak E.V., Novikova O.V. The Dynamic Response of a Building Model with Decreasing Stiffness during Long-Period Earthquakes. Bulletin of MPEI. 2019;6:124—130. (in Russian). DOI: 10.24160/1993-6982-2019-6-124-130.
Published
2019-03-28
Section
Mathematical Modeling, Numerical Methods and Program Complexe (05.13.18)