Обзор и классификация методов оценки и прогнозирования солнечной радиации

  • Алексей [Aleksey] Геннадьевич [G.] Васьков [Vaskov]
  • Алишер [Alisher] Фархатович [F.] Нарынбаев [Narynbaev]
Ключевые слова: солнечная энергетика, солнечная радиация, оценка и прогнозирование, эмпирические модели

Аннотация

Выполнен обзор различных методов оценки и прогнозирования солнечной радиации. Наземные измерения интенсивности солнечной радиации ведутся не повсеместно, при том, что необходимость в оценке валового (теоретического) потенциала солнечной энергии региона возникает достаточно часто. В подобных случаях проводятся приближенные оценочные расчеты ресурсов солнечной энергии с использованием различных моделей, основные из которых рассмотрены в настоящей работе.

Важность адекватной оценки локального потенциала солнечной энергии влияет не только на рациональное распределение средств при проектировании, но и на прогнозирование выработки энергоустановки, использующей энергию солнца. Представлена общая классификация методик оценки и прогнозирования солнечной радиации по типу используемых параметров и оцениваемых величин (физические и статистические модели). Статистические методы включают в себя традиционные эмпирические модели, оценивающие среднемесячные суточные суммы солнечной радиации на горизонтальной поверхности с разделением на 4 категории в зависимости от задействованных входных параметров, модели, оценивающие суммы диффузной составляющей солнечной радиации на горизонтальной (модели разложения, параметрические модели), и наклонной (изотропные и анизотропные модели) приемных площадках. Кроме того, к статистическим методам оценки и прогнозирования солнечной радиации отнесены также и модели, основанные на методах интеллектуального анализа данных. Предложенные статистические модели основываются на продолжительности солнечного сияния, максимальной температуре окружающей среды, относительной влажности, атмосферном давлении, широте и долготе местности, порядковом номере дня года, показателе облачности, средней температуре окружающей среды, высоте над уровнем моря, средней скорости ветра, осадках и т. д.

Проведено оценочное сравнение и сопоставление результатов моделирования среднемесячных суточных сумм суммарной солнечной радиации на горизонтальную плоскость по универсальным эмпирическим моделям со среднемноголетними данными наземных измерений на территории Кыргызстана и показателями из базы данных NASA POWER.

Сведения об авторах

Алексей [Aleksey] Геннадьевич [G.] Васьков [Vaskov]

кандидат технических наук, доцент кафедры гидроэнергетики и возобновляемых источников энергии НИУ «МЭИ», e-mail: VaskovAG@mpei.ru

Алишер [Alisher] Фархатович [F.] Нарынбаев [Narynbaev]

студент кафедры гидроэнергетики и возобновляемых источников энергии НИУ «МЭИ», e-mail: Alisher592@ya.ru

Литература

1. Letendre S., Makhyoun M., Taylor M. Predicting Solar Power Production: Irradiance Forecasting Models // Appl. and Future Prospects. 2014.
2. Besharat F., Dehghan A.A., Faghih A.R. Empirical Models for Estimating Global Solar Radiation: a Review and Case Study // Renewable and Sustainable Energy Rev. 2013. V. 21. Pp. 798—821.
3. Iqbal M. An Introduction to Solar Radiation. Toronto: Academic Press, 1983.
4. Angstrom A. Solar and Terrestrial Radiation // Quarterly J. Royal Meteorological Soc. 1924. V. 50. Pp. 121—126.
5. Ma C., Iqbal M. Statistical Comparison of Solar Radiation Correlations Monthly Average Global and Diffuse Radiation on Horizontal Surface // Solar Energy. 1984. V. 33. No. 2. Pp. 143—148.
6. Duffie J., Beckman W., Worek W. Solar Engineering of Thermal Processes. N.-Y.: Willey, 2013.
7. Foster R., Ghassemi M., Cota A. Solar Energy. N.-Y.: CRC Press, 2010.
8. Bhardwaj S., Bhola P. Solar Energy Estimation Techniques: а Review // Proc. 7th IEEE India Intern. Conf. Power Electronics. Punjab, 2016. Pp. 1—5.
9. Lőf G.O.G., Duffie J., Smith C. World Distribution of Solar Radiation // Eng. station Rep. 1965. No. 21.
10. El-Metwally M. Sunshine and Global Solar Radiation Estimation at Different Sites in Egypt // J. Atmospheric and Solar-Terrestrial Phys. 2005. No. 67. Pp. 1331—1342.
11. Jin Z., Yezheng W., Gang Y. General Formula for Estimation of Monthly Average Daily Global Solar Radiation in China // Energy Conversion and Management. 2005. No. 46. Pp. 257—268.
12. Bakirci K. Correlations for Estimation of Daily Global Solar Radiation with Hours of Bright Sunshine in Turkey // Energy. 2009. V. 34. Pp. 485—501.
13. Rietveld M. A New Method for Estimating the Regression Coefficients // Agrtcultural Meteorology. 1978. V. 19. Pp. 243—252.
14. Glover J., McCulloch S. The Empirical Relation Between Solar Radiation and Hours of Sunshine // Quarterly J. Royal Meteorological Soc. 1958. No. 84. Pp. 172—175.
15. Page J.K. The Estimation of Monthly Mean Values of Daily Total Short Wave Radiation on Vertical and Inclined Surfaces from Sunshine Records for Latitudes 40°N—40°S // Proc. U.N. Conf. New Sources of Energy. 1961. No. S98. V. 4. Pp. 378—390.
16. Dogniaux R., Lemoine M. Classification of Radiation Sites in Terms of Different Indices of Atmospheric Transparency // Solar Radiation Data. Solar Energy Research and Development in the European Community. 1983. Ser. F. V. 2. Pp. 94—107.
17. Soler A. Monthly Specific Rietveld's Сorrelations // Solar and Wind Technol. 1990. V. 7. Pp. 305—308.
18. Bahel V., Bakhsh H., Srinivasan R. A correlation for Estimation of Global Solar Radiation // Energy. 1987. V. 12. Pp. 131—135.
19. Almorox J., Hontoria C. Global Solar Radiation Estimation Using Sunshine Duration in Spain // Energy Conversion and Management. 2004. No. 45. Pp. 1529—1535.
20. Black J.N. The Distribution of Solar Radiation Over the Earth's Surface // Arch. Met. Geoph. Biokl. 1956. No. 7. Pp. 165—189.
21. Kimball H.H. Variations in the Total and Luminious Solar Radiation with Geographical Position in the United States // Monthly Weather Rev. 1919. No. 47(11). Pp. 769—793.
22. Badescu V. Correlations to Estimate Monthly Mean Daily Solar Global Irradiation: Application to Romania // Energy. 1999. V. 24. Pp. 883—893.
23. Hargreaves G.H., Samani Z.A. Estimating Potential Evapotranspiration // J. Irrigation and Drainage Eng. 1982. V. 108. Pp. 223—230.
24. Bristow C.L., Campbell G.S. On the Relationship between Incoming Solar Radiation and Daily Maximum and Minimum Temperature // Agricultural and Forest Meteorology. 1984. V. 31. Pp. 159—166.
25. Donatell M., Campbell G.S. A Simple Model to Estimate Global Solar Radiation // Proc. fifth European Soc. Agronomy Congress. Nitra, 1998.
26. Goodin D.G., Hutchinson J.M.S., Vanderlip R.L., Knapp M.C. Estimating Solar Irradiance for Crop Modeling Using Daily Air Temperature Data // Agronomy J. 1999. V. 91. Pp. 845—851.
27. Allen R. Self-calibrating Method for Estimating Solar Radiation from Air Temperature // J. Hydrologic Eng. 1997. V. 2. Pp. 56—67.
28. Annandale J.G., Jovanic N.Z., Benade N., Allen R.G. Software for Missing Data Error Analysis of Penman–Monteith Reference Evapotranspiration // Irrigation Sci. 2002. V. 21. Pp. 57—67.
29. Swartman R.K., Ogunlade O. Solar Radiation Estimates from Common Parameters // Solar Energy. 1967. V. 11. Pp. 170—172.
30. Gariepy J. Estimation of Global Solar Radiation. Intern. Rep. Quebec: Service of Meteorology, 1980.
31. Chen R., Ersi K., Yang J., Lu S., Zhao W. Validation of Five Global Radiation Models with Measured Daily Data in China // Energy Conversion and Management. 2004. V. 45. Pp. 1759—1769.
32. Maghrabi A.H. Parameterization of a Simple Model to Estimate Monthly Global Solar Radiation Based on Meteorological Variables, and Еvaluation of Existing Solar Radiation Models for Tabouk, Saudi Arabia // Energy Conversion and Management. 2009. V. 50. Pp. 2754—2760.
33. Trabea A., Shaltout M. Correlation of Global Solar Radiation with Meteorological Parameters Over Egypt // Renewable Energy. 2000. V. 21. Pp. 297—308.
34. Supit I., Van Kappel R.R. A Simple Method to Estimate Global Radiation // Solar Energy. 1998. V. 63. Pp. 147—160.
35. Klein S.A. Calculation of Monthly Average Insolation on Tilted Surfaces // Solar Energy. 1997. No. 19. Pp. 325—329.
36. Liu B.Y., Jordan R.C. The Interrelationship and Characteristic Distribution of Direct, Diffuse and Total Solar Radiation // Solar Energy. 1960. No. 4(3). Pp. 1—19.
37. Iqbal M. Correlation of Average Diffuse and Beam Radiation with Hours of Bright Sunshine // Solar Energy. 1979. No. 23(2). Pp. 169—173.
38. Spencer J.W. Fourier Series Representation of the Position of the Sun // Appl. Opt. 1971. No. 10. Pp. 2569—2571.
39. Maleki S.A., Hizam H., Gomes C. Estimation of Hourly, Daily and Monthly Global Solar Radiation on Inclined Surfaces: Models Revisited // Energies. 2017. No. 10(1). Pp. 134—162.
40. Gueymard С. Critical Analysis and Performance Assessment of Clear Sky Solar Irradiance Models Using Theoretical and Measured Data // Solar Energy. 1993. V. 51. No. 2. Pp. 121—138.
41. American Society and Heating, Refrigerating and Airconditioning Engineers (ASHRAE). Handbook of Fundamentals. 1972. Pp. 385138443.
42. Machler M.A., Iqbal M.A. A Modification of the ASHRAE Clear Sky Irradiation Model // ASHRAE Trans. 1967. No. 91. Pp. 106—115.
43. Parishwad G., Bhardwaj R.K., Nema V.K. Estimation of Hourly Solar Radiation for India // Renewable Energy. 1997. No. 12. Pp. 303—313.
44. Nijegorodov N. Improved Ashrae Model to Predict Hourly and Daily Solar Radiation Components in Botswana, Namibia, and Zimbabwe. // WREC. 1996. No. 9. Pp. 1270—1273.
45. Ayodele T.R., Ogunjuyigbe A.S. Prediction of Monthly Average Global Solar Radiation Based on Statistical Distribution of Clearness Index // Energy. 2015. No. 90. Pp. 1733—1742.
46. Orgill J.F., Hollands K.G. Correlation Equation for Hourly Diffuse Radiation on a Horizontal Surface // Solar Energy. 1977. V. 19. Pp. 357—359.
47. Boland J., Scott L., Luther M. Modelling the Diffuse Fraction of Global Solar Radiation on a Horizontal Surface // Environmetrics. 2001. No. 12. Pp. 103—116.
48. Lam J.C., Li D. Correlation between Global Solar Radiation and Its Direct and Diffuse Components // Build. Environ. 1996. No. 31. Pp. 527—535.
49. Liu B., Jordan R. Daily Insolation on Surfaces Tilted Towards Equator // ASHRAE. Trans. 1961. No. 10. Pp. 53—59.
50. Badescu V. 3D Isotropic Approximation for Solar Diffuse Irradiance on Tilted Surfaces // Renewable Energy. 2002. V. 26. Pp. 221—233.
51. Tian Y.Q., Davies-Colley R.J., Gong P., Thorrold B.W. Estimating Solar Radiation on Slopes of Arbitrary Aspect // Agricultural and Forest Meteorology. 2001. V. 109. Pp. 67—74.
52. Perez R., Stewart R., Seals R., Guertin T. The Development and Verification of the Perez Diffuse Radiation Model, Albany, Albuquerque: Sandia National Labs., 1988.
53. Steven M.D., Unsworth M.H. The Diffuse Solar Irradiance of Slopes Under Cloudless Skies // Quarterly J. Royal Meteorological Soc. 1979. V. 105. Pp. 593-602.
54. Абруков В.С. и др. Интеллектуальная система прогнозирования работы солнечных электростанций // Альтернативная энергетика и экология. 2017. Т. 16. C. 30—42.
55. Mellit A. Artificial Intelligence Technique for Modelling and Forecasting of Solar Radiation Data: a Review // Intern. J. Artificial Intelligence and Soft Computing. 2008. V. 1. Pp. 52—76.
56. Notton G. e. a. Estimation of Hourly Global Solar Irradiation on Tilted Planes from Horizontal One Using Artificial Neural Networks // Energy. 2012. V. 39. Pp. 166—179.
57. Kalogirou S.A. Artificial Neural Networks in Renewable Energy Systems Applications: a Review // Renewable and Sustainable Energy Rev. 2001. V. 5(4). Pp. 373—401.
58. Mellit A., Kalogirou S.A. Artificial Intelligence Techniques for Sizing Photovoltaic Systems: a Review // Sustainable Energy Rev. 2009. V. 13. No. 2. Pp. 406—419.
59. Lazzús J.A., Pérez Ponce A.A., Marín J. Estimation of Global Solar Radiation Over the City of La Serena (Chile) Using a Neural Network // Appl. Solar Energy. 2011. V. 47(1). Pp. 66—73.
60. Ouammi A., Zejli D., Dagdougui H., Benchrifa R. Artificial Neural Network Analysis of Moroccan Solar Potential // Renewable and Sustainable Energy Rev. 2012. V. 16(7). Pp. 4876—4889.
61. Celik A.N., Muneer T. Neural Network Based Method for Conversion of Solar Radiation Data // Energy Conversion and Management. 2013. V. 67. Pp. 117—124.
62. Mellitm A., Pavan A. A 24-h Forecast of Solar Irradiance Using Artificial Neural Network: Application for Performance Prediction of a Grid-connected PV Plant at Trieste, Italy // Solar Energy. 2010. V. 84. No. 5. Pp. 805—821.
63. Wanga Z., Wanga F., Sub S. Solar Irradiance Short-term Prediction Model Based on BP Neural Network // Energy Proc. 2011. V. 12. Pp. 448—498.
64. Capizzi G., Napoli C. Innovative Second-generation Wavelets Construction with Recurrent Neural Networks for Solar Radiation Forecasting // IEEE Trans. Neural Networks and Learning Syst. 2012. V. 23(11). Pp. 1805—1815.
65. López G., Battles F.J., Tovas-Pescador J. Selection of Input Parameters to Model Direct Solar Irradiance by Using Artificial Neural Networks // Energy. 2005. V. 30. No. 9. Pp. 1675—1684.
66. Rizwan M., Jamil M., Kirmani S., Kothari D.P. Fuzzy Logic Based Modeling and Estimation of Global Solar Energy Using Meteorological Parameters // Energy. 2014. V. 70. Pp. 685—691.
67. Şen Z. Fuzzy Algorithm for Estimation of Solar Irradiation from Sunshine Duration // Solar Energy. 1998. V. 63(1). Pp. 39—49.
68. Gómez V., Casanovas A. Fuzzy Modeling of Solar Irradiance on Inclined Surfaces // Solar Energy. 2003. V. 75(4). Pp. 307—315.
69. Suganthi L., Iniyan S., Samuel A.A. Applications of Fuzzy Logic in Renewable Energy Systems — a Review // Renewable and Sustainable Energy Rev. 2015. V. 48. Pp. 585—607.
70. Mohammadi K., Shamshirband S., Anisi M.H., Alam K.A., Petković D. Support Vector Regression Based Prediction of Global Solar Radiation on a Horizontal Surface // Energy Conversion and Management. 2015.V. 91. Pp. 433—441.
71. Zeng J., Qiao W. Short-term Solar Power Prediction Using a Support Vector Machine // Renewable Energy. 2013. V. 52. Pp. 118—127.
72. Ekici B. A Least Squares Support Vector Machine Model for Prediction of the Next Day Solar Insolation for Effective Use of PV Systems // Measurement. 2014. V. 50. Pp. 255—262.
73. Научно-прикладной справочник по климату СССР. Л.: Гидрометеоиздат, 1989. T. 32.
74. NASA POWER Project Data Sets [Электрон. ресурс] www.power.larc.nasa.gov (дата обращения 30.10.2019).
---
Для цитирования: Васьков А.Г., Нарынбаев А.Ф. Обзор и классификация методов оценки и прогнозирования солнечной радиации // Вестник МЭИ. 2020. № 4. С. 49—61. DOI: 10.24160/1993-6982-2020-4-49-61.
#
1. Letendre S., Makhyoun M., Taylor M. Predicting Solar Power Production: Irradiance Forecasting Models. Appl. and Future Prospects. 2014.
2. Besharat F., Dehghan A.A., Faghih A.R. Empirical Models for Estimating Global Solar Radiation: a Review and Case Study. Renewable and Sustainable Energy Rev. 2013; 21:798—821.
3. Iqbal M. An Introduction to Solar Radiation. Toronto: Academic Press, 1983.
4. Angstrom A. Solar and Terrestrial Radiation. Quarterly J. Royal Meteorological Soc. 1924;50:121—126.
5. Ma C., Iqbal M. Statistical Comparison of Solar Radiation Correlations Monthly Average Global and Diffuse Radiation on Horizontal Surface. Solar Energy. 1984;33;2:143—148.
6. Duffie J., Beckman W., Worek W. Solar Engineering of Thermal Processes. N.-Y.: Willey, 2013.
7. Foster R., Ghassemi M., Cota A. Solar Energy. N.-Y.: CRC Press, 2010.
8. Bhardwaj S., Bhola P. Solar Energy Estimation Techniques: а Review. Proc. 7th IEEE India Intern. Conf. Power Electronics. Punjab, 2016:1—5.
9. Lőf G.O.G., Duffie J., Smith C. World Distribution of Solar Radiation. Eng. station Rep. 1965;21.
10. El-Metwally M. Sunshine and Global Solar Radiation Estimation at Different Sites in Egypt J. Atmospheric and Solar-Terrestrial Phys. 2005;67:1331—1342.
11. Jin Z., Yezheng W., Gang Y. General Formula for Estimation of Monthly Average Daily Global Solar Radiation in China. Energy Conversion and Management. 2005;46:257—268.
12. Bakirci K. Correlations for Estimation of Daily Global Solar Radiation with Hours of Bright Sunshine in Turkey. Energy. 2009;34:485—501.
13. Rietveld M. A New Method for Estimating the Regression Coefficients. Agrtcultural Meteorology. 1978; 19:243—252.
14. Glover J., McCulloch S. The Empirical Relation Between Solar Radiation and Hours of Sunshine. Quarterly J. Royal Meteorological Soc. 1958;84:172—175.
15. Page J.K. The Estimation of Monthly Mean Values of Daily Total Short Wave Radiation on Vertical and Inclined Surfaces from Sunshine Records for Latitudes 40°N—40°S. Proc. U.N. Conf. New Sources of Energy. 1961;S98;4: 378—390.
16. Dogniaux R., Lemoine M. Classification of Radiation Sites in Terms of Different Indices of Atmospheric Transparency. Solar Radiation Data. Solar Energy Research and Development in the European Community. 1983;F;2:94—107.
17. Soler A. Monthly Specific Rietveld's Сorrelations. Solar and Wind Technol. 1990;7:305—308.
18. Bahel V., Bakhsh H., Srinivasan R. A correlation for Estimation of Global Solar Radiation. Energy. 1987;12:131—135.
19. Almorox J., Hontoria C. Global Solar Radiation Estimation Using Sunshine Duration in Spain. Energy Conversion and Management. 2004;45:1529—1535.
20. Black J.N. The Distribution of Solar Radiation Over the Earth's Surface. Arch. Met. Geoph. Biokl. 1956; 7:165—189.
21. Kimball H.H. Variations in the Total and Luminious Solar Radiation with Geographical Position in the United States. Monthly Weather Rev. 1919;47(11):769—793.
22. Badescu V. Correlations to Estimate Monthly Mean Daily Solar Global Irradiation: Application to Romania. Energy. 1999;24:883—893.
23. Hargreaves G.H., Samani Z.A. Estimating Potential Evapotranspiration. J. Irrigation and Drainage Eng. 1982;108:223—230.
24. Bristow C.L., Campbell G.S. On the Relationship Between Incoming Solar Radiation and Daily Maximum and Minimum Temperature. Agricultural and Forest Meteorology. 1984;31:159—166.
25. Donatell M., Campbell G.S. A Simple Model to Estimate Global Solar Radiation. Proc. fifth European Soc. Agronomy Congress. Nitra, 1998.
26. Goodin D.G., Hutchinson J.M.S., Vanderlip R.L., Knapp M.C. Estimating Solar Irradiance for Crop Modeling Using Daily Air Temperature Data. Agronomy J. 1999;91:845—851.
27. Allen R. Self-calibrating Method for Estimating Solar Radiation from Air Temperature. J. Hydrologic Eng. 1997;2:56—67.
28. Annandale J.G., Jovanic N.Z., Benade N., Allen R.G. Software for Missing Data Error Analysis of Penman–Monteith Reference Evapotranspiration. Irrigation Sci. 2002;21:57—67.
29. Swartman R.K., Ogunlade O. Solar Radiation Estimates from Common Parameters. Solar Energy. 1967; 11:170—172.
30. Gariepy J. Estimation of Global Solar Radiation. Intern. Rep. Quebec: Service of Meteorology, 1980.
31. Chen R., Ersi K., Yang J., Lu S., Zhao W. Validation of Five Global Radiation Models with Measured Daily Data in China. Energy Conversion and Management. 2004;45:1759—1769.
32. Maghrabi A.H. Parameterization of a Simple Model to Estimate Monthly Global Solar Radiation Based on Meteorological Variables, and Еvaluation of Existing Solar Radiation Models for Tabouk, Saudi Arabia. Energy Conversion and Management. 2009;50:2754—2760.
33. Trabea A., Shaltout M. Correlation of Global Solar Radiation with Meteorological Parameters Over Egypt. Renewable Energy. 2000;21:297—308.
34. Supit I., Van Kappel R.R. A Simple Method to Estimate Global Radiation. Solar Energy. 1998;63:147—160.
35. Klein S.A. Calculation of Monthly Average Insolation on Tilted Surfaces. Solar Energy. 1997;19:325—329.
36. Liu B.Y., Jordan R.C. The Interrelationship and Characteristic Distribution of Direct, Diffuse and Total Solar Radiation. Solar Energy. 1960;4(3):1—19.
37. Iqbal M. Correlation of Average Diffuse and Beam Radiation with Hours of Bright Sunshine. Solar Energy. 1979;23(2):169—173.
38. Spencer J.W. Fourier Series Representation of the Position of the Sun. Appl. Opt. 1971;10:2569—2571.
39. Maleki S.A., Hizam H., Gomes C. Estimation of Hourly, Daily and Monthly Global Solar Radiation on Inclined Surfaces: Models Revisited. Energies. 2017;10(1):134—162.
40. Gueymard С. Critical Analysis and Performance Assessment of Clear Sky Solar Irradiance Models Using Theoretical and Measured Data. Solar Energy. 1993;51; 2:121—138.
41. American Society and Heating, Refrigerating and Airconditioning Engineers (ASHRAE). Handbook of Fundamentals. 1972:385138443.
42. Machler M.A., Iqbal M.A. A Modification of the ASHRAE Clear Sky Irradiation Model. ASHRAE Trans. 1967;91:106—115.
43. Parishwad G., Bhardwaj R.K., Nema V.K. Estimation of Hourly Solar Radiation for India. Renewable Energy. 1997;12:303—313.
44. Nijegorodov N. Improved Ashrae Model to Predict Hourly and Daily Solar Radiation Components in Botswana, Namibia, and Zimbabwe.. WREC. 1996;9:1270—1273.
45. Ayodele T.R., Ogunjuyigbe A.S. Prediction of Monthly Average Global Solar Radiation Based on Statistical Distribution of Clearness Index. Energy. 2015;90:1733—1742.
46. Orgill J.F., Hollands K.G. Correlation Equation for Hourly Diffuse Radiation on a Horizontal Surface. Solar Energy. 1977;19:357—359.
47. Boland J., Scott L., Luther M. Modelling the Diffuse Fraction of Global Solar Radiation on a Horizontal Surface. Environmetrics. 2001;12:103—116.
48. Lam J.C., Li D. Correlation between Global Solar Radiation and Its Direct and Diffuse Components. Build. Environ. 1996;31:527—535.
49. Liu B., Jordan R. Daily Insolation on Surfaces Tilted Towards Equator. ASHRAE. Trans. 1961;10:53—59.
50. Badescu V. 3D Isotropic Approximation for Solar Diffuse Irradiance on Tilted Surfaces. Renewable Energy. 2002;26:221—233.
51. Tian Y.Q., Davies-Colley R.J., Gong P., Thorrold B.W. Estimating Solar Radiation on Slopes of Arbitrary Aspect. Agricultural and Forest Meteorology. 2001;109:67—74.
52. Perez R., Stewart R., Seals R., Guertin T. The Development and Verification of the Perez Diffuse Radiation Model, Albany, Albuquerque: Sandia National Labs., 1988.
53. Steven M.D., Unsworth M.H. The Diffuse Solar Irradiance of Slopes under Cloudless Skies. Quarterly J. Royal Meteorological Soc. 1979;105:593-602.
54. Abrukov V.S. i dr. Intellektual'naya Sistema Prognozirovaniya Raboty Solnechnykh Elektrostantsiy. Al'ternativnaya Energetika i Ekologiya. 2017;16:30—42. (in Russian).
55. Mellit A. Artificial Intelligence Technique for Modelling and Forecasting of Solar Radiation Data: a Review. Intern. J. Artificial Intelligence and Soft Computing. 2008;1:52—76.
56. Notton G. e. a. Estimation of Hourly Global Solar Irradiation on Tilted Planes from Horizontal One Using Artificial Neural Networks. Energy. 2012;39:166—179.
57. Kalogirou S.A. Artificial Neural Networks in Renewable Energy Systems Applications: a Review. Renewable and Sustainable Energy Rev. 2001;5(4):373—401.
58. Mellit A., Kalogirou S.A. Artificial Intelligence Techniques for Sizing Photovoltaic Systems: a Review.Sustainable Energy Rev. 2009;13;2:406—419.
59. Lazzús J.A., Pérez Ponce A.A., Marín J. Estimation of Global Solar Radiation Over the City of La Serena (Chile) Using a Neural Network. Appl. Solar Energy. 2011;47(1):66—73.
60. Ouammi A., Zejli D., Dagdougui H., Benchrifa R. Artificial Neural Network Analysis of Moroccan Solar Potential. Renewable and Sustainable Energy Rev. 2012;16(7):4876—4889.
61. Celik A.N., Muneer T. Neural Network Based Method for Conversion of Solar Radiation Data. Energy Conversion and Management. 2013;67:117—124.
62. Mellitm A., Pavan A. A 24-h Forecast of Solar Irradiance Using Artificial Neural Network: Application for Performance Prediction of a Grid-connected PV Plant at Trieste, Italy. Solar Energy. 2010;84;5:805—821.
63. Wanga Z., Wanga F., Sub S. Solar Irradiance Short-term Prediction Model Based on BP Neural Network. Energy Proc. 2011;12:448—498.
64. Capizzi G., Napoli C. Innovative Second-generation Wavelets Construction with Recurrent Neural Networks for Solar Radiation Forecasting. IEEE Trans. Neural Networks and Learning Syst. 2012;23(11):1805—1815.
65. López G., Battles F.J., Tovas-Pescador J. Selection of Input Parameters to Model Direct Solar Irradiance by Using Artificial Neural Networks. Energy. 2005;30;9:1675—1684.
66. Rizwan M., Jamil M., Kirmani S., Kothari D.P. Fuzzy Logic Based Modeling and Estimation of Global Solar Energy Using Meteorological Parameters. Energy. 2014;70:685—691.
67. Şen Z. Fuzzy Algorithm for Estimation of Solar Irradiation from Sunshine Duration. Solar Energy. 1998;63(1):39—49.
68. Gómez V., Casanovas A. Fuzzy Modeling of Solar Irradiance on Inclined Surfaces. Solar Energy. 2003;75(4):307—315.
69. Suganthi L., Iniyan S., Samuel A.A. Applications of Fuzzy Logic in Renewable Energy Systems — a Review. Renewable and Sustainable Energy Rev. 2015;48:585—607.
70. Mohammadi K., Shamshirband S., Anisi M.H., Alam K.A., Petković D. Support Vector Regression Based Prediction of Global Solar Radiation on a Horizontal Surface. Energy Conversion and Management. 2015;91: 433—441.
71. Zeng J., Qiao W. Short-term Solar Power Prediction Using a Support Vector Machine. Renewable Energy. 2013;52:118—127.
72. Ekici B. A Least Squares Support Vector Machine Model for Prediction of the Next Day Solar Insolation for Effective Use of PV Systems. Measurement. 2014;50:255—262.
73. Nauchno-prikladnoy Spravochnik po Klimatu SSSR. L.: Gidrometeoizdat, 1989;32. (in Russian).
74. NASA POWER Project Data Sets [Elektron. Resurs] www.power.larc.nasa.gov (Data Obrashcheniya 30.10.2019).
---
For citation: Vaskov A.G., Narynbaev A.F. Solar Radiation Estimation and Prediction Methods: a Review and Classification. Bulletin of MPEI. 2020;4:49-61. (in Russian). DOI: 10.24160/1993-6982-2020-4-49-61.
Опубликован
2019-12-26
Раздел
Энергоустановки на основе возобновляемых видов энергии (05.14.08)