Электрические характеристики высокочастотного индуктора индукционного разряда низкого давления в замкнутых бесферритных трубках

  • Екатерина [Ekaterina] Владимировна [V.] Ловля [Lovlya]
  • Олег [Oleg] Алексеевич [A.] Попов [Popov]
  • Илья [Ilya] Анатольевич [A.] Ошурков [Oshurkov]
Ключевые слова: ртутная плазма низкого давления, бесферритный индукционный разряд, замкнутая трубка, катушка индуктивности

Аннотация

В рамках трансформаторной модели исследованы влияния частоты высокочастотного поля и конструктивных параметров лампы на характеристики индуктора бесферритной индукционной лампы с замкнутой разрядной трубкой. Разряд возбуждался в трубках диаметром d = 16, 25 и 38 мм в смеси паров ртути (~0,01 Торр) и аргона (0,6 Торр) на частотах поля f = 1,7; 3,4 и 8,5 МГц и мощностях плазмы 25…200 Вт с помощью катушки индуктивности (число витков N = 1, 2, 3), размещенной по «внутреннему» периметру замкнутой разрядной трубки.

Установлено, что зависимости ВЧ-тока и напряжения на катушке индуктивности и мощности потерь в проводе катушки от мощности плазмы имеют минимум, который с повышением частоты ВЧ-поля и диаметра разрядной трубки сдвигается в сторону меньших уровней мощности. Показано, что минимальные значения тока, напряжения и мощности потерь в катушке уменьшаются с увеличением f, d и N. Результаты расчета находятся в удовлетворительном качественном согласии с экспериментом, а расхождения, предположительно, связаны с принятыми в модели допущениями: не учтены скин-эффект и пространственная неоднородность электрического поля в плазме индукционного разряда.

Сведения об авторах

Екатерина [Ekaterina] Владимировна [V.] Ловля [Lovlya]

аспирант кафедры светотехники НИУ «МЭИ»

Олег [Oleg] Алексеевич [A.] Попов [Popov]

доктор технических наук, профессор кафедры светотехники НИУ «МЭИ», e-mail: popovoleg445@yahoo.com

Илья [Ilya] Анатольевич [A.] Ошурков [Oshurkov]

ассистент кафедры светотехники НИУ «МЭИ»

Литература

1. Попов О.А., Старшинов П.В., Иликеева Р.А., Буреева Д.А., Ирхин И.В., Левченко В.А. Характеристики индуктора и плазмы бесферритных индукционных амальгамных ультрафиолетовых ламп с замкнутыми трубками малого диаметра // Вестник МЭИ. 2020. № 5. С. 98—111.
2. Popov O.A., Starshinov P.V., Ilikeeva R.A., Irkhin I.V. Ferrite-free Closed-loop Inductively-coupled Low Mercury Pressure UV Lamp // Plasma Res. Express. 2020. V. 2(3). P. 218.
3. Allash M.E., Vasilyak L.M., Eliseev N.P., Popov O.A., Sokolov D.V. Testing and Analysis of Characteristics of Low Pressure Mercury and Amalgam Bactericidal UV Lamps by Various Manufacturers // Light and Eng. 2019. No. 6. Pp. 112—122.
4. Levchenko V.A., Popov O.A., Svitnev C.A., Starshinov P.V. Electric and Radiation Characteristics of a Transformer Type Lamp with a Discharge Tube of 16,6 mm Diameter // Light and Eng. 2016. V. 24. No. 2. Pp. 77—81.
5. Райзер Ю.П. Физика газового разряда. М.: Наука, 1987.
6. Старшинов П.В., Попов О.А., Ирхин И.В., Васина В.Н., Левченко В.А. Электрические и излучательные характеристики индуктивных бесферритных ртутных УФ-ламп в замкнутых трубках // Вестник МЭИ. 2019. № 3. С. 87—97.
7. Popov O.A., Chandler R.T. Ferrite-free High Power Electrodeless Fluorescent Lamp Operated at a Frequency of 160–1000 kHz // Plasma Sources Sci. and Technol. 2002. V. 11. Pp. 218—226.
8. New England Wire Technologies [Офиц. сайт] www.newenglandwire.com (дата обращения 11.03.2021).
9. Рохлин Г.Н. Разрядные источники света. М.: Энергоатомиздат, 1991.
10. Охонская Е.В., Федоренко А.С. Расчет и конструирование люминесцентных ламп. Саранск: Изд-во МГУ им. Огарева, 1997.
11. Gudmundsson J.T., Lieberman M.A. Magnetic Induction and Plasma Impedance in a Cylindrical Inductive Discharge // Plasma Sources Sci. Technol. 1997. № 4. Pp. 540—550.
12. Piejak R., Godyak V.A., Alexandrovich B.M. Electric Field in Inductively Coupled Discharges // J. Appl. Phys. 2001. V. 89. No. 7. Pp. 3590—3593.
13. Piejak R.B., Godyak V.A., Alexandrovich B.M. А Simple Analyses of an Inductive RF Discharge // Plasma Sources Sci. Technol. 1992. No. 1. Pp. 179—185.
14. Исупов М.В., Уланов И.М., Литвинцев А.Ю., Колмаков К.Н. Экспериментальное исследование энергетических характеристик индукционного разряда трансформаторного типа в парах ртути // Теплофизика и аэромеханика. 2002. Т. 9. С. 151—161.
15. Александров А.Ф., Вавилин К.В., Кралькина Е.А., Неклюдова П.А., Павлов В.Б. Исследование параметров плазмы индуктивного ВЧ-источника плазмы диаметром 46 см. Ч. I. Параметры плазмы в области скин-слоя // Прикладная физика. 2013. № 5. C. 34—37.
16. Kralkina E.A. е. а. RF Power Absorption by Plasma of a Low-pressure Inductive Discharge // Plasma Sources Sci. Technol. 2016. V. 25. P. 015016.
17. Старшинов П.В., Попов О.А., Ирхин И.В., Левченко В.А., Васина В.Н. Характеристики бесферритного индуктивного ртутного разряда низкого давления в замкнутой кварцевой трубке // Прикладная физика. 2018. № 4. С. 24—29.
18. Rauner D., Briefi S., Fantz U. RF Power Transfer Efficiency of Inductively Coupled Low Pressure H2 and D2 Discharges // Plasma Sources Sci. Technol. 2017. V. 26. P. 095004.
19. Hyo-Chang Lee, Seung Ju Oh, Chin-Wook Chung. Experimental Observation of the Skin Effect on Plasma Uniformity in Inductively Coupled Plasmas with a Radio Frequency Bias // Plasma Sources Sci. Technol. 2012. V. 21. No. 3. P. 035003.
20. Denneman J.W. Determination of Electromagnetic Properties of Low-pressure Electrodeless Inductive Discharges // J. Phys. D: Appl. Phys. 1990. V. 23. Pp. 293—298.
21. Lister G.G., Cox M. Modelling of Inductively Coupled Discharges with Internal and External Coils // Plasma Sources Sci. Technol. 1992. V. 1. Pp. 67—73.
22. Никифорова В.А., Попов О.А. Влияние частоты ВЧ-поля и разрядного тока на радиальное распределение параметров плазмы индукционного бесферритного разряда в замкнутой трубке // Вестник МЭИ. 2012. № 1. С. 108—114.
---
Для цитирования: Ловля Е.В., Попов О.А., Ошурков И.А. Электрические характеристики высокочастотного индуктора индукционного разряда низкого давления в замкнутых бесферритных трубках // Вестник МЭИ. 2021. № 4. С. 95—104. DOI: 10.24160/1993-6982-2021-4-95-104.
#
1. Popov O.A., Starshinov P.V., Ilikeeva R.A., Bureeva D.A., Irkhin I.V., Levchenko V.A. Kharakteristiki induktora i Plazmy Besferritnykh Induktsionnykh Amal'gamnykh Ul'trafioletovykh Lamp s Zamknutymi Trubkami Malogo Diametra. Vestnik MEI. 2020;5:98—111. (in Russian).
2. Popov O.A., Starshinov P.V., Ilikeeva R.A., Irkhin I.V. Ferrite-free Closed-loop Inductively-coupled Low Mercury Pressure UV Lamp. Plasma Res. Express. 2020;2(3):218.
3. Allash M.E., Vasilyak L.M., Eliseev N.P., Popov O.A., Sokolov D.V. Testing and Analysis of Characteristics of Low Pressure Mercury and Amalgam Bactericidal UV Lamps by Various Manufacturers. Light and Eng. 2019;6:112—122.
4. Levchenko V.A., Popov O.A., Svitnev C.A., Starshinov P.V. Electric and Radiation Characteristics of a Transformer Type Lamp with a Discharge Tube of 16,6 mm Diameter. Light and Eng. 2016;24;2:77—81.
5. Rayzer Yu.P. Fizika Gazovogo Razryada. M.: Nauka, 1987. (in Russian).
6. Starshinov P.V., Popov O.A., Irkhin I.V., Vasina V.N., Levchenko V.A. Elektricheskie i Izluchatel'nye Kharakteristiki Induktivnykh Besferritnykh Rtutnykh UF-lamp v Zamknutykh Trubkakh. Vestnik MEI. 2019;3:87—97. (in Russian).
7. Popov O.A., Chandler R.T. Ferrite-free High Power Electrodeless Fluorescent Lamp Operated at a Frequency of 160–1000 kHz. Plasma Sources Sci. and Technol. 2002;11:218—226.
8. New England Wire Technologies [Ofits. Sayt] www.newenglandwire.com (Data Obrashcheniya 11.03.2021).
9. Rokhlin G.N. Razryadnye Istochniki Sveta. M.: Energoatomizdat, 1991. (in Russian).
10. Okhonskaya E.V., Fedorenko A.S. Raschet i Konstruirovanie Lyuminestsentnykh Lamp. Saransk: Izd-vo MGU im. Ogareva, 1997. (in Russian).
11. Gudmundsson J.T., Lieberman M.A. Magnetic Induction and Plasma Impedance in a Cylindrical Inductive Discharge. Plasma Sources Sci. Technol. 1997;4:540—550.
12. Piejak R., Godyak V.A., Alexandrovich B.M. Electric Field in Inductively Coupled Discharges. J. Appl. Phys. 2001;89;7:3590—3593.
13. Piejak R.B., Godyak V.A., Alexandrovich B.M. A Simple Analyses of an Inductive RF Discharge. Plasma Sources Sci. Technol. 1992;1:179—185.
14. Isupov M.V., Ulanov I.M., Litvintsev A.Yu., Kolmakov K.N. Eksperimental'noe Issledovanie Energeticheskikh Kharakteristik Induktsionnogo Razryada Transformatornogo Tipa v Parakh Rtuti. Teplofizika i Aeromekhanika. 2002;9:151—161. (in Russian).
15. Aleksandrov A.F., Vavilin K.V., Kral'kina E.A., Neklyudova P.A., Pavlov V.B. Issledovanie Parametrov Plazmy Induktivnogo VCH-istochnika Plazmy Diametrom 46 sm. Ch. I. Parametry Plazmy v Oblasti Skin-sloya. Prikladnaya Fizika. 2013;5:34—37. (in Russian).
16. Kralkina E.A. e. a. RF Power Absorption by Plasma of a Low-pressure Inductive Discharge. Plasma Sources Sci. Technol. 2016;25:015016.
17. Starshinov P.V., Popov O.A., Irkhin I.V., Levchenko V.A., Vasina V.N. Kharakteristiki Besferritnogo Induktivnogo Rtutnogo Razryada Nizkogo Davleniya v Zamknutoy Kvartsevoy Trubke. Prikladnaya Fizika. 2018;4:24—29. (in Russian).
18. Rauner D., Briefi S., Fantz U. RF Power Transfer Efficiency of Inductively Coupled Low Pressure H2 and D2 Discharges. Plasma Sources Sci. Technol. 2017;26:095004.
19. Hyo-Chang Lee, Seung Ju Oh, Chin-Wook Chung. Experimental Observation of the Skin Effect on Plasma Uniformity in Inductively Coupled Plasmas with a Radio Frequency Bias. Plasma Sources Sci. Technol. 2012;21;3:035003.
20. Denneman J.W. Determination of Electromagnetic Properties of Low-pressure Electrodeless Inductive Discharges. J. Phys. D: Appl. Phys. 1990;23:293—298.
21. Lister G.G., Cox M. Modelling of Inductively Coupled Discharges with Internal and External Coils. Plasma Sources Sci. Technol. 1992;1:67—73.
22. Nikiforova V.A., Popov O.A. Vliyanie Chastoty VCH-polya i Razryadnogo Toka na Radial'noe Raspredelenie Parametrov Plazmy Induktsionnogo Besferritnogo Razryada v Zamknutoy Trubke. Vestnik MEI. 2012;1:108—114. (in Russian).
---
For citation: Lovlya E.V., Popov O.A., Oshurkov I.A. Electrical Characteristics of the High-frequency Induction Coil for Low Pressure Discharge in Ferrite-free Closed-loop Tubes. Bulletin of MPEI. 2021;4:95—104. (in Russian). DOI: 10.24160/1993-6982-2021-4-95-104.
Опубликован
2021-02-18
Раздел
Светотехника (05.09.07)