The Influence of 20Kh13 Steel Specimen Surface Pitting Damage on the Growth of Fatigue Cracks

  • Александра [Aleksandra] Ивановна [I.] Лебедева [Lebedeva]
  • Алексей [Aleksey] Феликсович [F.] Медников [Mednikov]
  • Владислав [Vladislav] Романович [R.] Мосин [Mosin]
Keywords: blade steel, pitting damage, fatigue loading, fatigue crack

Abstract

The damage to the surface of steam turbine rotor blades by pitting reduces significantly their fatigue resistance and can lead to fracture resulted from the development of fatigue cracks. To determine the service life of blades or the probability of their breakage, it is necessary to have data that allow one to assess how the degree and nature of damage to their surface affects their fatigue resistance. If the rotor blade has passed, in an off-design operation mode, the zone of increased stress amplitudes, then, given the known number of cycles, the measure of fatigue damage to the blade material can be estimated. If the stress amplitudes did not exceed the endurance limit (taking into account the safety factor and the loading cycle asymmetry value), the fatigue cracks which could lead to blade failure did not appear in the blade material. If the stress amplitudes and the corresponding number of cycles are in the zone to the left of the French line, irreversible fatigue damage did not occur in the blade material. Determination of the lengths of fatigue cracks appearing at the pit bottom as a function of stress amplitude and number of operating cycles is a topical issue. This will make it possible to evaluate the size of the damaged layer and to restore the blade fatigue resistance by removing this layer. The results from studies of crack resistance under fatigue loading of specimens made of 20Kh13 blade steel with artificially created pitting damage to the surface are presented. The possibility of using the calculated dependences for evaluating the French line for samples with initial pitting damage has been confirmed, and an assessment of the damaged metal layer at the pit bottom depending on the stress amplitude and number of operating cycles has been obtained. The length with which the crack must be removed to restore the blade system service life has been determined.

Information about authors

Александра [Aleksandra] Ивановна [I.] Лебедева [Lebedeva]

Ph.D. (Techn.), Assistant Professor of Scientific and Educational Center «Ecology of Energy», NRU MPEI, e-mail: ailebedewa@yandex.ru

Алексей [Aleksey] Феликсович [F.] Медников [Mednikov]

Ph.D. (Techn.), Assistant Professor of Steam and Gas Turbines named after A.V. Shcheglyaev Dept., NRU MPEI, e-mail: MednikovAlF@mpei.ru

Владислав [Vladislav] Романович [R.] Мосин [Mosin]

Student of NRU MPEI, e-mail: MosinVR@mpei.ru

References

1. Рыженков В.А., Лебедева А.И., Медников А.Ф. Современное состояние и способы решения проблемы эрозионного износа лопаток влажно-паровых ступеней турбин // Теплоэнергетика. 2011. № 9. С. 8—13.
2. Чернецкий Н.С. Коррозионные повреждения лопаток турбин // Теплоэнергетика. 1984. № 4. С. 68—71.
3. Орлик В.Г. Снижение абразивной эрозии турбинных ступеней перегретого пара // Электрические станции. 2008. № 12. С. 33—41.
4. ГОСТ 34497—2018. Лопатки паровых турбин. Основные требования по замене.
5. Лебедева А.И., Соколов В.С., Резинских В.Ф., Богачев А.Ф. Влияние язвенной коррозии на сопротивление усталости лопаточных материалов // Теплоэнергетика. 1992. № 2. С. 11—14.
6. Шлянников В.Н., Яруллин Р.Р., Захаров А.П. Влияние защитных покрытий на характеристики сопротивления деформированию и разрушению материала лопаток паровых турбин // Заводская лаборатория. Диагностика материалов. 2016. № 82(3). С. 53—59.
7. Иванова В.С., Терентьев В.Ф. Природа усталости металлов. М.: Металлургия, 1975.
8. Иванова В.С. Усталостное разрушение металлов. М.: Металлургиздат, 1963.
9. Лебедева А.И., Настека Д.В. Современные методы восстановления лопаток паровых турбин // Электрические станции. 2018. № 8. С. 19—24.
---
Для цитирования: Лебедева А.И., Медников А.Ф., Мосин В.Р. Влияние питтинговой поврежденности поверхности образцов из стали 20Х13 на рост усталостных трещин // Вестник МЭИ. 2022. № 2. С. 70—76. DOI: 10.24160/1993-6982-2022-2-70-76.
#
1. Ryzhenkov V.A., Lebedeva A.I., Mednikov A.F. Sovremennoe Sostoyanie i Sposoby Resheniya Problemy Erozionnogo Iznosa Lopatok Vlazhno-parovyh Stupenej Turbin. Teploenergetika. 2011;9:8—13. (in Russian).
2. Cherneckij N.S. Korrozionnye Povrezhdeniya Lopatok Turbin. Teploenergetika. 1984;4:68—71. (in Russian).
3. Orlik V.G. Snizhenie Abrazivnoj Erozii Turbinnyh Stupenej Peregretogo Para. Elektricheskie stancii. 2008;12:33—41. (in Russian).
4. GOST 34497—2018. Lopatki Parovyh Turbin. Osnovnye Trebovaniya po Zamene. (in Russian).
5. Lebedeva A.I., Sokolov V.S., Rezinskih V.F., Bogachev A.F. Vliyanie Yazvennoj Korrozii na Soprotivlenie Ustalosti Lopatochnyh Materialov. Teploenergetika. 1992;2:11—14. (in Russian).
6. Shlyannikov V.N., Yarullin R.R., Zaharov A.P. Vliyanie Zashchitnyh Pokrytij na Harakteristiki Soprotivleniya Deformirovaniyu i Razrusheniyu Materiala Lopatok Parovyh Turbin. Zavodskaya Laboratoriya. Diagnostika Materialov. 2016;82(3):53—59. (in Russian).
7. Ivanova V.S., Terent'ev V.F. Priroda Ustalosti Metallov. M.: Metallurgiya, 1975. (in Russian).
8. Ivanova V.S. Ustalostnoe Razrushenie Metallov. M.: Metallurgizdat, 1963. (in Russian).
9. Lebedeva A.I., Nasteka D.V. Sovremennye Metody Vosstanovleniya Lopatok Parovyh Turbin. Elektricheskie Stancii. 2018;8:19—24. (in Russian).
---
For citation: Lebedeva A.I., Mednikov A.F., Mosin V.R. The Influence of 20Kh13 Steel Specimen Surface Pitting Damage on the Growth of Fatigue Cracks. Bulletin of MPEI. 2022;2:70—76. (in Russian). DOI: 10.24160/1993-6982-2022-2-70-76.
Published
2021-06-29
Section
Thermal Power Stations, Their Power Systems and Units (05.14.14)