The Influence of Grade P6M5 Tool Steel Induction Nitriding Process Parameters on the Diffusion Layer Microhardness and Thickness

  • Павел [Pavel] Алексеевич [A.] Палканов [Palkanov]
  • Владимир [Vladimir] Александрович [A.] Кошуро [Koshuro]
  • Александр [Aleksandr] Александрович [A.] Фомин [Fomin]
Keywords: tool steel, induction heating, nitriding, diffusion layer, microhardness

Abstract

The effect the inductor current and the duration of thermal exposure in a nitrogen medium have on the microhardness and depth of the diffusion layers formed in grade P6M5 steel is studied. The investigation was carried out on 5-mm-thick samples 10 mm in diameter that had not been subjected to preliminary heat treatment. The samples were nitrided in a specially designed chamber in the form of a sealed quartz vessel placed in an inductor. The steel samples were placed in the chamber at the inductor location level. After filling the chamber with nitrogen gas to a pressure of 0.2±0.05 MPa, the samples were subjected to high-frequency induction heating. The temperature of the samples was adjusted by changing the inductor current from 4.8 to 5.8 kA. It was found that at an inductor current of 4.8 kA, the sample was heated to a temperature above 800°C; with a further increase in the current, the sample temperature increased above 1000°C. As a result of nitriding with a duration of 300–1200 s at a temperature of 800–1000°C, a surface nitride layer with a thickness of up to 20 μm and a diffusion sublayer with a thickness of up to 200 μm were produced. The surface layers were characterized by a nitrogen content of up to 9 at % and microhardness of 1930–1950 HV (200 gf). The diffusion layers were characterized by a lower nitrogen content of up to 6 at %. and microhardness of 1450–1500 HV (100 gf). Based on the obtained experimental data, empirical models describing the effect of the inductor current and the duration of thermal exposure on the diffusion layer thickness and microhardness have been developed.

Information about authors

Павел [Pavel] Алексеевич [A.] Палканов [Palkanov]

Research engineer of the Electrophysical Processes and Technology Laboratory, Ph.D.-student of the Electric Power and Electrical Engineering Dept., Yuri Gagarin State Technical University of Saratov, e-mail: maikmozovskii@mail.ru

Владимир [Vladimir] Александрович [A.] Кошуро [Koshuro]

Ph.D. (Techn.), Assistant Professor of Materials Science and Biomedical Engineering Dept., Yuri Gagarin State Technical University of Saratov, e-mail: dimirion@mail.ru

Александр [Aleksandr] Александрович [A.] Фомин [Fomin]

Dr.Sci. (Techn.), Head of Materials Science and Biomedical Engineering Dept., Yuri Gagarin State Technical University of Saratov, e-mail: afominalex@gmail.com

References

1. Иващенко А.П. Анализ способов повышения стойкости материалов режущих инструментов // Международный журнал фундаментальных и прикладных исследований. 2015. № 12. С. 389—392.
2. Clavier F. e. a. Impact of Cutting Tool Wear on Residual Stresses Induced During Turning of a 15-5 PH Stainless Steel // Proc. CIRP. 2020. V. 87. Pp. 107—112.
3. Ильин А.А., Строганов Г.Б., Скворцова С.В. Покрытия различного назначения для металлических материалов. М.: ИНФРА-М, 2019.
4. Мокрицкий Б.Я. Управление работоспособностью металлорежущего инструмента путем нанесения покрытий, механической упрочняющей обработки и контроля качества // Упрочняющие технологии и покрытия. 2010. № 9. С. 38—47.
5. Хайдоров А.Д., Юнусов Ф.А. Вакуумная термическая обработка высоколегированных коррозионностойких сталей // Научно-технические ведомости СПбГПУ. 2017. № 1. С. 226—235.
6. Dartois E. e. a. Electronic Sputtering of Solid N2 by Swift Ions // Nuclear Inst. and Methods in Phys. Research. 2020. V. 485. Pp. 13—19.
7. Давлетбаева Р.Р. Покрытие для режущего инструмента // Молодой ученый. 2017. № 2. С. 98—101.
8. Shekhtman S.R., Sukhova N.A. Synthesis of Multilayer Vacuum Ion-plasma Coatings Ti-TiN During the Surface Modification // Materials Sci. Forum. 2016. V. 870. Pp. 113—117.
9. Афанасьева Ю.Д., Шехтман С.Р. Технология нанесения покрытия Ti-TiN на режущий инструмент // Вестник УГАТУ. 2018. № 3. С. 3—9.
10. Зубков М.С. Преимущества и недостатки газотермического напыления // Инновационные технологии в машиностроении: Cб. трудов IX Междунар. науч.-практ. конф. 2018. С. 46—48.
11. Гурьев А.М., Лыгденов Б.Д., Власова О.А. Совершенствование технологии химико-термической обработки инструментальных сталей // Обработка металлов: технология, оборудование, инструменты. 2009. № 1. С. 14—15.
12. Лобанов М.Л., Кардонина Н.И., Россина Н.Г. Защитные покрытия. Екатеринбург: Изд-во Уральского ун-та, 2014.
13. Akhtar S.S., Arif A.M., Yilbas B.S. Gas Nitriding of H13 Tool Steel Used for Extrusion Dies: Numerical and Experimental Investigation // Comprehensive Materials Finishing. 2017. V. 3. Pp. 158—177.
14. Попов З.И. и др. Теоретическое исследование нитридов железа γ′-Fe4N и ε-FexN при давлениях до 500 ГПа // Письма в ЖЭТФ. 2015. № 6. С. 405—409.
15. Peter S. Laser Nitriding of Metals // Progress in Materials Sci. 2002. V. 47. Pp. 1—161.
16. Будилов В.В., Агзамов Р.Д., Рамазанов К.Н. Исследование и разработка методов химико-термической обработки на основе структурно фазового модифицирования поверхности деталей сильноточными разрядами в вакууме // Вестник УГАТУ. 2007. № 1. С. 140—149.
17. Maldzinski L., Tacikowski J. ZeroFlow Gas Nitriding of Steels // Thermochemical Surface Eng. Steels. N.-Y.: Woodhead Publ., 2015. Pp. 459—483.
18. Palkanov P., Fomin A., Rodionov I. Structural Transformations on the Surface of 1.3343 Tool Steel and 12Cr18Ni10Ti Stainless Steel after Induction Heat Treatment and Quenching // J. Physics: Conf. Series. 2018. V. 1124. Pp. 081016.
19. Fomin A. e. a. Functionally Graded Ti (C,N) Coatings and Their Production on Titanium Using Solid-state Carburization Associated with Induction Heat Treatment // Composite Structures. 2020. V. 245. Pp. 112393.
20. Palkanov A., Fomin A. Influence of Induction Chemical Thermal Treatment in a Gaseous Medium on the Formation of a Wear-resistant Gradient Nitride Layer on Tool Steel // Proc. SPIE. 2020. V. 11845. Pp. 118451.
21. Палканов П.А., Кошуро В.А., Фомин А.А. Влияние тока индуктора при азотировании стали Р6М5 на структуру и микротвердость диффузионного слоя // Вопросы электротехнологии. 2021. № 2. С. 5—13.
22. Лахтин Ю.М., Коган Я.Д. Азотирование стали. М.: Машиностроение, 1976.
---
Для цитирования: Палканов П.А., Кошуро В.А., Фомин А.А. Влияние технологических параметров индукционного азотирования инструментальной стали Р6М5 на микротвердость и толщину диффузионного слоя // Вестник МЭИ. 2022. № 2. С. 95—104. DOI: 10.24160/1993-6982-2022-2-95-104.
---
Работа выполнена при поддержке: программы УМНИК (договор № 16667ГУ/2021)
#
1. Ivashchenko A.P. Analiz Sposobov Povysheniya Stojkosti Materialov Rezhushchih Instrumentov. Mezhdunarodnyj Zhurnal Fundamental'nyh i Prikladnyh Issledovanij. 2015;12:389—392. (in Russian).
2. Clavier F. e. a. Impact of Cutting Tool Wear on Residual Stresses Induced During Turning of a 15-5 PH Stainless Steel. Proc. CIRP. 2020;87:107—112.
3. Il'in A.A., Stroganov G.B., Skvorcova S.V. Pokrytiya Razlichnogo Naznacheniya dlya Metallicheskih Materialov. M.: INFRA-M, 2019. (in Russian).
4. Mokrickij B.Ya. Upravlenie Rabotosposobnost'yu Metallorezhushchego Instrumenta Putem Naneseniya Pokrytij, Mekhanicheskoj Uprochnyayushchej Obrabotki i Kontrolya Kachestva. Uprochnyayushchie Tekhnologii i Pokrytiya. 2010;9:38—47. (in Russian).
5. Hajdorov A.D., Yunusov F.A. Vakuumnaya Termicheskaya Obrabotka Vysokolegirovannyh Korrozionnostojkih Stalej. Nauchno-tekhnicheskie Vedomosti SPbGPU. 2017;1:226—235. (in Russian).
6. Dartois E. e. a. Electronic Sputtering of Solid N2 by Swift Ions. Nuclear Inst. and Methods in Phys. Research. 2020;485:13—19.
7. Davletbaeva R.R. Pokrytie dlya Rezhushchego Instrumenta. Molodoj Uchenyj. 2017;2:98—101. (in Russian).
8. Shekhtman S.R., Sukhova N.A. Synthesis of Multilayer Vacuum Ion-plasma Coatings Ti-TiN During the Surface Modification. Materials Sci. Forum. 2016;870:113—117.
9. Afanas'eva Yu.D., Shekhtman S.R. Tekhnologiya Naneseniya Pokrytiya Ti-TiN na Rezhushchij Instrument. Vestnik UGATU. 2018;3:3—9. (in Russian).
10. Zubkov M.S. Preimushchestva i Nedostatki Gazotermicheskogo Napyleniya. Innovacionnye Tekhnologii v Mashinostroenii: Cb. Trudov IX Mezhdunar. Nauch.-prakt. Konf. 2018:46—48. (in Russian).
11. Gur'ev A.M., Lygdenov B.D., Vlasova O.A. Sovershenstvovanie Tekhnologii Himiko-termicheskoj Obrabotki Instrumental'nyh Stalej. Obrabotka Metallov: Tekhnologiya, Oborudovanie, Instrumenty. 2009;1:14—15. (in Russian).
12. Lobanov M.L., Kardonina N.I., Rossina N.G. Zashchitnye Pokrytiya. Ekaterinburg: Izd-vo Ural'skogo Un-ta, 2014. (in Russian).
13. Akhtar S.S., Arif A.M., Yilbas B.S. Gas Nitriding of H13 Tool Steel Used for Extrusion Dies: Numerical and Experimental Investigation. Comprehensive Materials Finishing. 2017;3:158—177.
14. Popov Z.I. i dr. Teoreticheskoe Issledovanie Nitridov Zheleza γ′-Fe4N i ε-FexN pri Davleniyah do 500 GPa. Pis'ma v ZHETF. 2015;6:405—409. (in Russian).
15. Peter S. Laser Nitriding of Metals. Progress in Materials Sci. 2002;47:1—161.
16. Budilov V.V., Agzamov R.D., Ramazanov K.N. Issledovanie i Razrabotka Metodov Himiko-termicheskoj Obrabotki na Osnove Strukturno Fazovogo Modificirovaniya Poverhnosti Detalej Sil'notochnymi Razryadami v Vakuume. Vestnik UGATU. 2007;1:140—149. (in Russian).
17. Maldzinski L., Tacikowski J. ZeroFlow Gas Nitriding of Steels. Thermochemical Surface Eng. Steels. N.-Y.: Woodhead Publ., 2015:459—483.
18. Palkanov P., Fomin A., Rodionov I. Structural Transformations on the Surface of 1.3343 Tool Steel and 12Cr18Ni10Ti Stainless Steel after Induction Heat Treatment and Quenching. J. Physics: Conf. Series. 2018;1124:081016.
19. Fomin A. e. a. Functionally Graded Ti (C,N) Coatings and Their Production on Titanium Using Solid-state Carburization Associated with Induction Heat Treatment. Composite Structures. 2020;245:112393.
20. Palkanov A., Fomin A. Influence of Induction Chemical Thermal Treatment in a Gaseous Medium on the Formation of a Wear-resistant Gradient Nitride Layer on Tool Steel. Proc. SPIE. 2020;11845:118451.
21. Palkanov P.A., Koshuro V.A., Fomin A.A. Vliyanie Toka Induktora pri Azotirovanii Stali R6M5 na Strukturu i Mikrotverdost' Diffuzionnogo Sloya. Voprosy Elektrotekhnologii. 2021;2:5—13. (in Russian).
22. Lahtin Yu.M., Kogan Ya.D. Azotirovanie Stali. M.: Mashinostroenie, 1976. (in Russian).
---
For citation: Palkanov P.A., Koshuro V.A., Fomin A.A. The Influence of Grade P6M5 Tool Steel Induction Nitriding Process Parameters on the Diffusion Layer Microhardness and Thickness. Bulletin of MPEI. 2021;2:95—104. (in Russian). DOI: 10.24160/1993-6982-2022-2-95-104.
---
The work is executed at support: UMNIK Programs (Contract No. 16667ГУ/2021)
Published
2021-09-28
Section
Electrotechnology (05.09.10)