Конструкция фотоэлектрической электростанции мощностью 3 МВт и ее моделирование с использованием инструментов Matlab и Simulink
Аннотация
Растущий спрос на энергию в развивающихся странах порождает вопрос об энергетической безопасности и ведет к необходимости использования потенциала возобновляемых источников. Анализ характеристик выдаваемой мощности фотоэлектрических систем, присоединённых к электрической сети, может помочь при проектировании, эксплуатации и обслуживании новых установок для выработки электрической энергии из энергии солнечного излучения.
Моделирование и анализ фотоэлектрических систем преобразования энергии необходимы разработчикам солнечных электростанций для исследований, позволяющих точно прогнозировать ожидаемую выходную мощность при изменяющихся погодных условиях. Модель помогает прогнозировать поведение и характеристики фотоэлектрического модуля на основе эквивалентной схемы математической модели с использованием платформы Matlab/Simulink при различных значениях температуры окружающей среды и интенсивности солнечного излучения.
Настоящая работа посвящена вопросам выбора компонентов и моделированию фотоэлектрической (ФЭ) системы производства электроэнергии с использованием программного обеспечения Matlab/Simulink. Электростанция состоит из фотоэлектрических панелей, соединенных последовательно и параллельно, повышающего напряжение преобразователя постоянного тока и трехфазного инвертора, присоединенного с помощью повышающего трансформатора к сети среднего напряжения 33 кВ. В системе управления повышающего преобразователя постоянного тока реализован контроллер поиска точки максимальной мощности (ТММ), а для управления инвертором использован ПИ-регулятор тока.
Литература
2. Bentouba S., Bourouis M., Zioui N., Pirashanthan A., Velauthapillai D. Performance Assessment of a 20 MW Photovoltaic Power Plant in a Hot Climate Using Real Data and Simulation Tools // Energy Rep. 2021. V. 7. Pp. 7297—7314.
3. Abbood A.A., Salih M.A., Mohammed A.Y. Modeling and Simulation of 1 mw Grid Connected Photovoltaic System in Karbala City // Intern. J. Energy and Environment. 2018. V. 9. Pp. 153—168.
4. Popa D.-L., Nicolae M.-S., Nicolae P.-M., Popescu M. Design and Simulation of a 10 MW Photovoltaic Power Plant Using Matlab and Simulink // Proc. IEEE Intern. Power Electronics and Motion Control Conf. 2016. Pp. 378—383.
5. Al-Shetwi A.Q., Sujod M.Z. Modeling and Simulation of Photovoltaic Module with Enhanced Perturb and Observe MPPT Algorithm Using Matlab/Simulink // ARPN J. Eng. and Appl. Sci. 2016. V. 11. Pp. 12033—12038.
6. Sujith M., Mohan R., Sundravadivel P. Simulation Analysis of 100 kw Integrated Segmented Energy Storage for Grid Connected PV System // Intern. J. Electrical Eng. and Technol. (IJEET). 2012. V. 3. Pp. 164—173.
7. Mahmud M.A., Hossain M.J., Pota H.R., Roy N.K. Robust Nonlinear Controller Design for Three-phase Grid-connected Photovoltaic Systems Under Structured Uncertainties // IEEE Trans. Power Delivery. 2014. V. 29. Pp. 1221—1230.
8. Hassan M.S., Elbaset A.A. A Comparative Study for Optimum Design of Grid Connected PV System Based on Actual System Specifications // Intern. J. Computer Appl. 2015. V. 116. Pp. 19—34.
9. Abdelhalim B., Nadjiba T., Layachi Z., Abdelhak B. Robust Maximum Power Point Tracking Technique and PI Current Controller Design for Grid Connected PV System Using Matlab/Simulink // J. Electrical Eng. 2015. V. 15. Pp. 1—6.
10. Atiq J., Soori P.K. Modelling of a Grid Connected Solar PV System Using Matlab/Simulink // Int. J. Simul.: Syst. Sci. and Technol. 2017. V. 17. No. 41(3). Pp. 45.1—45.7.
11. Benaissa O. M., Hadjeri S., Zidi S. A. Modeling and Simulation of Grid Connected PV Generation System Using Matlab/Simulink // Intern. J. Power Electronics and Drive Syst. 2017. V. 8. Pp. 392—401.
12. Dash S., Kumri V.P. A Design of 400 KW Photovoltaic Array Connected Micro Grid System Using Matlab Simulink Model // Intern. J. Advanced Research in Electrical, Electronics and Instrumentation Eng. 2018. V. 7. Pp. 4257—4262.
13. H-Sánchez J., Rodríguez-Rodríguez J., Salgado-Herrera N., Castro L.M., Arrieta-Paternina M. Modeling and Performance Analysis of 1-MW PV Farm for Varying Solar Irradiance Conditions // Proc. IEEE Intern. Autumn Meeting on Power, Electronics and Computing. 2018. Pp. 1—6.
14. Asiedu-Asante A.B., Ofosu R.A. Cascaded Loop Control of a Three-phase Grid-connected PV Inverter System // Ghana J. Technol. 2020. V. 5. Pp. 40—53.
15. Adebiyi A.A., Lazarus I.J., Saha A.K., Ojo E.E. Performance Analysis of Grid-tied Photovoltaic System under Varying Weather Condition and Load // Intern. J. Electrical Computer Eng. 2021. V. 11. Pp. 94—106.
16. Sekyere C. K., Davis F., Opoku R., Otoo E., Takyi G., Atepor L. Performance Evaluation of a 20 MW Grid-coupled Solar Park Located in the Southern Oceanic Environment of Ghana // Cleaner Eng. and Technol. 2021. V. 5. P. 100273.
17. Stapleton G., Neill S. Grid-connected Solar Electric Systems. London: Routledge, 2012.
18. Al-Shetwi A.Q., Sujod M.Z. Modeling and Design of Photovoltaic Power Plant Connected to the MV Side of Malaysian Grid with TNB Technical Regulation Compatibility // Electrical Eng. 2018. V. 100. Pp. 2407—2419.
19. Bakhshi R., Sadeh J., Mosaddegh H.-R. Optimal Economic Designing of Grid-connected Photovoltaic Systems with Multiple Inverters Using Linear and Nonlinear Module Models Based on Genetic Algorithm // Renewable Energy. 2014. V. 72. Pp. 386—394.
20. Hammad M., Ebaid M.S., Halaseh G., Erekat B. Large Scale Grid Connected (20 MW) Photovoltaic System for Peak Load Shaving in Sahab Industrial District // Jordan J. Mechanical & Industrial Eng. 2015. V. 9. Pp. 45—59.
21. Orłowska-Kowalska T., Blaabjerg F., Rodríguez J. Advanced and Intelligent Control in Power Electronics and Drives. N.-Y.: Springer, 2014.
22. Banu I.V., Istrate M. Study on Three-phase Photovoltaic Systems under Grid Faults // Proc. International Conf. and Exposition on Electrical and Power Eng. 2014. Pp. 1132—1137.
23. Tazay A.F., Ibrahim A.M.A., Noureldeen O., Hamdan I. Modeling, Control, and Performance Evaluation of Grid-tied Hybrid PV/wind Power Generation System: Case Study of Gabel El-Zeit Region, Egypt // IEEE Access. 2020. V. 8. Pp. 96528—96542.
---
Для цитирования: Аль-акайши А.С., Алваза И., Кузнецов О.Н. Конструкция фотоэлектрической электростанции мощностью 3 МВт и ее моделирование с использованием инструментов Matlab и Simulink // Вестник МЭИ. 2023. № 4. С. 28—40. DOI: 10.24160/1993-6982-2023-4-28-40
#
1. Umar N., Bora B., Banerjee C., Panwar B. Comparison of Different PV Power Simulation Softwares: Case Study on Performance Analysis of 1 MW Grid-connected PV Solar Power Plant. Intern. J. Eng. Sci. Invention. 2018;7:11—24.
2. Bentouba S., Bourouis M., Zioui N., Pirashanthan A., Velauthapillai D. Performance Assessment of a 20 MW Photovoltaic Power Plant in a Hot Climate Using Real Data and Simulation Tools. Energy Rep. 2021;7:7297—7314.
3. Abbood A.A., Salih M.A., Mohammed A.Y. Modeling and Simulation of 1 mw Grid Connected Photovoltaic System in Karbala City. Intern. J. Energy and Environment. 2018;9:153—168.
4. Popa D.-L., Nicolae M.-S., Nicolae P.-M., Popescu M. Design and Simulation of a 10 MW Photovoltaic Power Plant Using Matlab and Simulink. Proc. IEEE Intern. Power Electronics and Motion Control Conf. 2016:378—383.
5. Al-Shetwi A.Q., Sujod M.Z. Modeling and Simulation of Photovoltaic Module with Enhanced Perturb and Observe MPPT Algorithm Using Matlab/Simulink. ARPN J. Eng. and Appl. Sci. 2016;11:12033—12038.
6. Sujith M., Mohan R., Sundravadivel P. Simulation Analysis of 100 kw Integrated Segmented Energy Storage for Grid Connected PV System. Intern. J. Electrical Eng. and Technol. (IJEET). 2012;3:164—173.
7. Mahmud M.A., Hossain M.J., Pota H.R., Roy N.K. Robust Nonlinear Controller Design for Three-phase Grid-connected Photovoltaic Systems Under Structured Uncertainties. IEEE Trans. Power Delivery. 2014;29:1221—1230.
8. Hassan M.S., Elbaset A.A. A Comparative Study for Optimum Design of Grid Connected PV System Based on Actual System Specifications. Intern. J. Computer Appl. 2015;116:19—34.
9. Abdelhalim B., Nadjiba T., Layachi Z., Abdelhak B. Robust Maximum Power Point Tracking Technique and PI Current Controller Design for Grid Connected PV System Using Matlab/Simulink. J. Electrical Eng. 2015;15:1—6.
10. Atiq J., Soori P.K. Modelling of a Grid Connected Solar PV System Using Matlab/Simulink. Int. J. Simul.: Syst. Sci. and Technol. 2017;17;41(3):45.1—45.7.
11. Benaissa O. M., Hadjeri S., Zidi S. A. Modeling and Simulation of Grid Connected PV Generation System Using Matlab/Simulink. Intern. J. Power Electronics and Drive Syst. 2017;8:392—401.
12. Dash S., Kumri V.P. A Design of 400 KW Photovoltaic Array Connected Micro Grid System Using Matlab Simulink Model. Intern. J. Advanced Research in Electrical, Electronics and Instrumentation Eng. 2018;7:4257—4262.
13. H-Sánchez J., Rodríguez-Rodríguez J., Salgado-Herrera N., Castro L.M., Arrieta-Paternina M. Modeling and Performance Analysis of 1-MW PV Farm for Varying Solar Irradiance Conditions. Proc. IEEE Intern. Autumn Meeting on Power, Electronics and Computing. 2018:1—6.
14. Asiedu-Asante A.B., Ofosu R.A. Cascaded Loop Control of a Three-phase Grid-connected PV Inverter System. Ghana J. Technol. 2020;5:40—53.
15. Adebiyi A.A., Lazarus I.J., Saha A.K., Ojo E.E. Performance Analysis of Grid-tied Photovoltaic System under Varying Weather Condition and Load. Intern. J. Electrical Computer Eng. 2021;11:94—106.
16. Sekyere C. K., Davis F., Opoku R., Otoo E., Takyi G., Atepor L. Performance Evaluation of a 20 MW Grid-coupled Solar Park Located in the Southern Oceanic Environment of Ghana. Cleaner Eng. and Technol. 2021;5:100273.
17. Stapleton G., Neill S. Grid-connected Solar Electric Systems. London: Routledge, 2012.
18. Al-Shetwi A.Q., Sujod M.Z. Modeling and Design of Photovoltaic Power Plant Connected to the MV Side of Malaysian Grid with TNB Technical Regulation Compatibility. Electrical Eng. 2018;100:2407—2419.
19. Bakhshi R., Sadeh J., Mosaddegh H.-R. Optimal Economic Designing of Grid-connected Photovoltaic Systems with Multiple Inverters Using Linear and Nonlinear Module Models Based on Genetic Algorithm. Renewable Energy. 2014;72:386—394.
20. Hammad M., Ebaid M.S., Halaseh G., Erekat B. Large Scale Grid Connected (20 MW) Photovoltaic System for Peak Load Shaving in Sahab Industrial District. Jordan J. Mechanical & Industrial Eng. 2015;9:45—59.
21. Orłowska-Kowalska T., Blaabjerg F., Rodríguez J. Advanced and Intelligent Control in Power Electronics and Drives. N.-Y.: Springer, 2014.
22. Banu I.V., Istrate M. Study on Three-phase Photovoltaic Systems under Grid Faults. Proc. International Conf. and Exposition on Electrical and Power Eng. 2014:1132—1137.
23. Tazay A.F., Ibrahim A.M.A., Noureldeen O., Hamdan I. Modeling, Control, and Performance Evaluation of Grid-tied Hybrid PV/wind Power Generation System: Case Study of Gabel El-Zeit Region, Egypt. IEEE Access. 2020;8:96528—96542
---
For citation: Al-akayshee A.S., Alwazah I., Kuznetsov O.N. Design and Simulation of a 3 MW Photovoltaic Power Plant Using the MATLAB and Simulink Tools. Bulletin of MPEI. 2023;4:28—40. (in Russian). DOI: 10.24160/1993-6982-2023-4-28-40