Открытые системы техводоснабжения атомных электрических станций как экологические регуляторы природно-технических систем
Аннотация
Обосновано принципиально новое видение экологической роли объектов ядерной энергетики. Материалы предназначены для широкого круга специалистов, работающих в указанной области и заинтересованных в формировании адекватного имиджа своей деятельности.
На сегодняшний день отсутствие непредвзятой и всесторонней оценки воздействия объектов ядерной энергетики на окружающую среду не позволяет обоснованно опровергать распространяемую в обществе ложную информацию. Одним из аргументов, часто используемых противниками ядерной энергетики, является негативное воздействие нагретых сбросных вод. Эти заявления, как правило, не получают должного опровержения. Данная работа призвана изменить ситуацию.
Основным фактическим материалом послужили результаты многолетней работы авторов по исследованию экологического состояния водоемов-охладителей российских атомных электрических станций (АЭС). Согласно полученным данным, прохождение вод через системы технического водоснабжения АЭС нередко улучшает их качество. Искусственный подогрев воды в пресных и морских водных объектах повышает уровень их биологической продуктивности и биоразнообразия. Кроме того, усилить позитивные аспекты систем технического водоснабжения можно путем разработки экологически ориентированных инновационных решений, как на этапе проектирования АЭС, так и в процессе их эксплуатации. На базе систем технического водоснабжения АЭС возможно создание обширного комплекса различных хозяйственных объектов. Таким образом, регулируемая подача нагретых вод создает условия для формирования управляемых природно-технических систем. В развивающихся странах это позволит решить проблемы продовольственного кризиса и кризиса водопотребления. Реализация этих возможностей при разработке прединвестиционной, предпроектной и проектной документации АЭС будет способствовать росту конкурентоспособности ядерной энергетики и повышению экологической безопасности ее объектов.
Литература
2. Суздалева А.Л., Горюнова С.В. Окна Овертона в развитии современной концепции биосферы и решении глобальных экологических проблем // Биосфера. 2015. Т. 7. № 4. С. 429—449.
3. Kim C.-K., Chung Y. Dynamics of Nuclear Power Policy in the Post-Fukushima Era: Interest Structure and Politicisation in Japan, Taiwan and Korea // Asian Studies Rev. 2018. V. 42. No. 1. Pp. 107—124.
4. Федоров М.П., Суздалева А.Л. Экологическая оптимизация гидроэнергетики как альтернативная стратегия охраны окружающей среды // Гидротехническое строительство. 2014. № 3. С. 10—15.
5. Lawrence A., Sovacool B., Stirling A. Nuclear Energy and Path Dependence in: Coherence or Continued Divergence? // Clim. Policy. 2016. No. 16. Pp. 622—641.
6. Davis L., Hausman C. Market Impacts of a Nuclear Power Plant Closure // American Economic J.: Appl. Economics. 2016. V. 8. No. 2. Pp. 92—122.
7. Суздалева А.Л. Улучшение общего и экологического имиджа объектов атомной энергетики // Известия высших учебных заведений. Серия «Ядерная энергетика». 2017. № 1. С. 147—155.
8. Суздалева А.Л., Горюнова С.В. Техногенез и деградация поверхностных водных объектов. М.: ИД Энергия, 2014.
9. Coutant C.C. Cold Shock to Aquatic Organisms: Guidance for Powerplant Siting, Design and Operation // Nuclear Safety. 1977. V. 18. No. 3. Pp. 329—342.
10. Суздалева А.Л. Создание управляемых природно-технических систем. М.: ИД Энергия, 2016.
11. Федоров М.П., Суздалева А.Л. Гидротехническое строительство как основа устойчивого развития // Гидротехническое строительство. 2014. № 11. С. 27—30.
12. Rahimifard S., Trollman H. UN Sustainable Development Goals: an Engineering Perspective // Intern. J. Sustainable Eng. 2018. V. 11. No. 1. Pp. 1—3.
13. McMahon J., Docherty A., Gentner S. Cooling System Effects on Plankton // Environmental Effects of Cooling Systems. Report of a Coordinated Research Programme on Physical and Biological Effects on the Environment of Cooling Systems and Thermal Discharges from Nuclear Power Stations. Vienna: International Atomic Energy Agency, 1980. Pp. 49—56.
14. Leeper D.A., Taylor B.E. Plankton Composition, Abundance and Dynamics in a Severely Stressed Cooling Reservoir // J. Plankton Research. 1995. V. 17. No. 4. Pp. 821—843.
15. Beitinger T.L., Bennet W.A., McCauley R.W. Temperature Tolerances of North American Freshwater Fishes Exposed to Dynamic Changes in Temperature // Environ. Biol. Fish. 2000. V. 58. No. 3. Pp. 237—275.
16. Kolehmainen S.E., Martin F.D., Schroeder P.B. Thermal Studies on Tropical Marine Ecosystems in Puerto Rico // Environmental Effects of Cooling Systems at Nuclear Power Plants. Vienna: International Atomic Energy Agency, 1975. Рp. 409—422.
17. Суздалева А.Л., Безносов В.Н. Экстремальные техногенные воздействия на окружающую среду: классификация и критерии оценки // Доклады Московского общества испытателей природы. М.: Графикон-принт, 2005. Т. 36. С. 134—136.
18. Мордухай-Болтовской Ф.Д. Проблема влияния тепловых и атомных электростанций на гидробиологический режим водоемов (обзор) // Экология организмов водохранилищ-охладителей. Л.: Наука, 1975. С. 7—69.
19. McMahon J. Biological Effects of Thermal Discharges in Tropical Regions // Environmental Effects of Cooling Systems. Report of a Coordinated Research Programme on Physical and Biological Effects on the Environment of Cooling Systems and Thermal Discharges from Nuclear Power Stations. Vienna: International Atomic Energy Agency, 1980. Pp. 169—172.
20. McMahon J.W., Docherty A.E. Phytoplankton and Cooling Systems: Temperature Effects Using Different Intake and Discharge Depths // Wat. Res. 1978. No. 12. Pp. 925—929.
21. Суздалева А.Л., Безносов В.Н. Изменение гидрологической структуры водоемов и сукцессия водных биоценозов при их превращении в водоемы-охладители атомной (тепловой) электростанции // Инженерная экология. 2000. № 2. С. 47—55.
22. Безносов В.Н., Суздалева А.Л. Сукцессионное развитие экосистем техногенных водоемов // Антропогенные влияния на водные экосистемы. М.: Товарищество научных изданий КМК, 2005. С. 120—129.
23. Суздалева А.Л., Попов А.В., Кучкина М.А., Фомин Д.В., Минин Д.В. Изменение химического состава воды и планктона при прохождении через систему технического водоснабжения АЭС // Безопасность энергетических сооружений. М.: НИИЭС, 2007. Вып. 16. С. 201—215.
24. Evans M.S., Warren G.J., Page D.I. The Effects of Power Plant Passage on Zooplankton Mortalities: Eight Years of Study at the Donald C. Cook Nuclear Plant // Wat. Res. 1986. V. 20. No. 6. Pp. 725—734.
25. Aldridge D.C., Elliott P., Moggridge G.D. Microencapsulated Biobullets for the Control of Biofouling Zebra Mussels // Environ. Sci. Technol. 2006. V. 40. No. 3. Pp. 975—979.
26. Koschel R., Mothes, G., Casper S.J. The Nuclear Power Plant and Its Role in the Life of Lake Stechlin // Lake Stechlin – a Temperate Oligotrophic Lake. Boston, 1985. V. 58. Pp. 419—432.
27. Wang Y.S., Lou Z.P., Sun C.C. Sun S. Ecological Environment Changes in Daya Bay, China, from 1982 to 2004 // Marine Pollution Bull. 2008. V. 56. No. 11. Pp. 1871—1879.
28. IIus E., Keskitalo J. The Response of Phytoplankton to Increased Temperature in the Loviisa Archipelago, Gulf of Finland // Boreal Env. Res. 2008. No. 13. Pp. 503—516.
29. Merriman D. The Calefaction of a River // Sci. Amer. 1970. V. 222. No. 5. Pp. 42—52.
30. Кучкина М.А., Безносов В.Н. Исследование процессов загрязнения и самоочищения в природно-техногенной системе водоема-охладителя АЭС // Вестник Российского университета дружбы народов. Серия: «Экология и безопасность жизнедеятельности». 2012. № 3. С. 48—52.
31. Безносов В.Н., Суздалева А.Л. Возможные изменения водной биоты в период глобального потепления климата // Водные ресурсы. 2004. Т. 31. № 4. С. 498—503.
32. Quevedo L., Ibáñez C., Caiola N., Mateu D. Effects of Thermal Pollution on Benthic Macroinvertebrate Communities of Large Mediterranean River // J. Entomology and Zoology Studies. 2018. No. 6(2). Pp. 500—507.
33. Coutant C. Beneficial Uses of Reject Heat // Environmental Effects of Cooling Systems. Report of a Coordinated Research Programme on Physical and Biological Effects on the Environment of Cooling Systems and Thermal Discharges from Nuclear Power Stations. Vienna: International Atomic Energy Agency, 1980. Рp. 190—192.
34. Суздалева А.Л., Безносов В.Н., Суздалева А.А. Экологические и социально-экологические основы проектирования городских резортов // Экология урбанизированных территорий. 2012. № 3. С. 29—34.
---
Для цитирования: Суздалева А.Л., Безносов В.Н., Кучкина М.А. Открытые системы техводоснабжения атомных электрических стан¬ций как экологические регуляторы природно-технических систем // Вестник МЭИ. 2020. № 2. С. 11—18. DOI: 10.24160/1993-6982¬2020-2-11-18.
#
1. Efficient Water Management in Water Cooled Reactors. Vienna: International Atomic Energy Agency, 2012;NP-T-2.6.
2. Suzdaleva A.L., Goryunova S.V. Okna Overtona v Razvitii Sovremennoy Kontseptsii Biosfery i Reshenii Global'nykh Ekologicheskikh Problem. Biosfera. 2015;7;4:429—449. (in Russian).
3. Kim C.-K., Chung Y. Dynamics of Nuclear Power Policy in the Post-Fukushima Era: Interest Structure and Politicisation in Japan, Taiwan and Korea. Asian Studies Rev. 2018;42;1:107—124.
4. Fedorov M.P., Suzdaleva A.L. Ekologicheskaya Optimizatsiya Gidroenergetiki kak Al'ternativnaya Strategiya Okhrany Okruzhayushchey Sredy. Gidrotekhnicheskoe Stroitel'stvo. 2014;3:10—15. (in Russian).
5. Lawrence A., Sovacool B., Stirling A. Nuclear Energy and Path Dependence in: Coherence or Continued Divergence? Clim. Policy. 2016;16:622—641.
6. Davis L., Hausman C. Market Impacts of a Nuclear Power Plant Closure. American Economic J.: Appl. Economics. 2016;8;2:92—122.
7. Suzdaleva A.L. Uluchshenie Obshchego i Ekologicheskogo Imidzha Ob′ektov Atomnoy Energetiki. Izvestiya Vysshikh Uchebnykh Zavedeniy. Seriya «Yadernaya Energetika». 2017;1:147—155. (in Russian).
8. Suzdaleva A.L., Goryunova S.V. Tekhnogenez i Degradatsiya Poverkhnostnykh Vodnykh Ob′ektov. M.: ID Energiya, 2014. (in Russian).
9. Coutant C.C. Cold Shock to Aquatic Organisms: Guidance for Powerplant Siting, Design and Operation. Nuclear Safety. 1977;18;3:329—342.
10. Suzdaleva A.L. Sozdanie Upravlyaemykh Prirodno-tekhnicheskikh Sistem. M.: ID Energiya, 2016. (in Russian).
11. Fedorov M.P., Suzdaleva A.L. Gidrotekhnicheskoe Stroitel'stvo kak Osnova Ustoychivogo Razvitiya. Gidrotekhnicheskoe Stroitel'stvo. 2014;11:27—30. (in Russian).
12. Rahimifard S., Trollman H. UN Sustainable Development Goals: an Engineering Perspective. Intern. J. Sustainable Eng. 2018;11;1:1—3.
13. McMahon J., Docherty A., Gentner S. Cooling System Effects on Plankton. Environmental Effects of Cooling Systems. Report of a Coordinated Research Programme on Physical and Biological Effects on the Environment of Cooling Systems and Thermal Discharges from Nuclear Power Stations. Vienna: International Atomic Energy Agency, 1980:49—56.
14. Leeper D.A., Taylor B.E. Plankton Composition, Abundance and Dynamics in a Severely Stressed Cooling Reservoir. J. Plankton Research. 1995;17;4:821—843.
15. Beitinger T.L., Bennet W.A., McCauley R.W. Temperature Tolerances of North American Freshwater Fishes Exposed to Dynamic Changes in Temperature. Environ. Biol. Fish. 2000;58;3:237—275.
16. Kolehmainen S.E., Martin F.D., Schroeder P.B. Thermal Studies on Tropical Marine Ecosystems in Puerto Rico. Environmental Effects of Cooling Systems at Nuclear Power Plants. Vienna: International Atomic Energy Agency, 1975:409—422.
17. Suzdaleva A.L., Beznosov V.N. Ekstremal'nye Tekhnogennye Vozdeystviya na Okruzhayushchuyu Sredu: Klassifikatsiya i Kriterii Otsenki. Doklady Moskovskogo Obshchestva Ispytateley Prirody. M.: Grafikon-print, 2005; 36:134—136. (in Russian).
18. Mordukhay-Boltovskoy F.D. Problema Vliyaniya Teplovykh i Atomnykh Elektrostantsiy na Gidrobiologicheskiy Rezhim Vodoemov (Obzor). Ekologiya Organizmov Vodokhranilishch-okhladiteley. L.: Nauka, 1975: 7—69. (in Russian).
19. McMahon J. Biological Effects of Thermal Discharges in Tropical Regions. Environmental Effects of Cooling Systems. Report of a Coordinated Research Programme on Physical and Biological Effects on the Environment of Cooling Systems and Thermal Discharges from Nuclear Power Stations. Vienna: International Atomic Energy Agency, 1980:169—172.
20. McMahon J.W., Docherty A.E. Phytoplankton and Cooling Systems: Temperature Effects Using Different Intake and Discharge Depths. Wat. Res. 1978;12: 925—929.
21. Suzdaleva A.L., Beznosov V.N. Izmenenie Gidrologicheskoy Struktury Vodoemov i Suktsessiya Vodnykh Biotsenozov pri Ikh Prevrashchenii v Vodoemyokhladiteli Atomnoy (Teplovoy) Elektrostantsii. Inzhenernaya Ekologiya. 2000;2:47—55. (in Russian).
22. Beznosov V.N., Suzdaleva A.L. Suktsessionnoe Razvitie Ekosistem Tekhnogennykh Vodoemov. Antropogennye Vliyaniya na Vodnye Ekosistemy. M.: Tovarishchestvo Nauchnykh Izdaniy KMK, 2005:120—129. (in Russian).
23. Suzdaleva A.L., Popov A.V., Kuchkina M.A., Fomin D.V., Minin D.V. Izmenenie Khimicheskogo Sostava Vody i Planktona pri Prokhozhdenii Cherez Sistemu Tekhnicheskogo Vodosnabzheniya AES. Bezopasnost' Energeticheskikh Sooruzheniy. M.: NIIES, 2007;16:201—215. (in Russian).
24. Evans M.S., Warren G.J., Page D.I. The Effects of Power Plant Passage on Zooplankton Mortalities: Eight Years of Study at the Donald C. Cook Nuclear Plant. Wat. Res. 1986;20;6:725—734.
25. Aldridge D.C., Elliott P., Moggridge G.D. Microencapsulated Biobullets for the Control of Biofouling Zebra Mussels. Environ. Sci. Technol. 2006;40;3:975— 979.
26. Koschel R., Mothes, G., Casper S.J. The Nuclear Power Plant and Its Role in the Life of Lake Stechlin. Lake Stechlin – a Temperate Oligotrophic Lake. Boston, 1985;58:419—432.
27. Wang Y.S., Lou Z.P., Sun C.C. Sun S. Ecological Environment Changes in Daya Bay, China, from 1982 to 2004. Marine Pollution Bull. 2008;56;11:1871—1879.
28. IIus E., Keskitalo J. The Response of Phytoplankton to Increased Temperature in the Loviisa Archipelago, Gulf of Finland. Boreal Env. Res. 2008;13:503—516.
29. Merriman D. The Calefaction of a River. Sci. Amer. 1970;222;5:42—52.
30. Kuchkina M.A., Beznosov V.N. Issledovanie Protsessov Zagryazneniya i Samoochishcheniya v Prirodno-tekhnogennoy Sisteme Vodoema-okhladitelya AES. Vestnik Rossiyskogo Universiteta Druzhby Narodov. Seriya: «Ekologiya i Bezopasnost' Zhiznedeyatel'nosti». 2012;3:48—52. (in Russian).
31. Beznosov V.N., Suzdaleva A.L. Vozmozhnye Izmeneniya Vodnoy Bioty v Period Global'nogo Potepleniya Klimata. Vodnye Resursy. 2004;31;4:498—503. (in Russian).
32. Quevedo L., Ibáñez C., Caiola N., Mateu D. Effects of Thermal Pollution on Benthic Macroinvertebrate Communities of Large Mediterranean River. J. Entomology and Zoology Studies. 2018;6(2):500—507.
33. Coutant C. Beneficial Uses of Reject Heat. Environmental Effects of Cooling Systems. Report of a Coordinated Research Programme on Physical and Biological Effects on the Environment of Cooling Systems and Thermal Discharges from Nuclear Power Stations. Vienna: International Atomic Energy Agency, 1980:190—192.
34. Suzdaleva A.L., Beznosov V.N., Suzdaleva A.A. Ekologicheskie i Sotsial'no-ekologicheskie Osnovy Proektirovaniya Gorodskikh Rezortov. Ekologiya Urbanizirovannykh Territoriy. 2012;3:29—34. (in Russian).
---
For citation: Suzdaleva A.L., Beznosov V.N., Kuchkina M.A. Open Service Cooling Water Supply Systems of Nuclear Power Plants as Environmental Regulators of Natural-Technical Systems. Bulletin of MPEI. 2020;2:11—18. (in Russian). DOI: 10.24160/1993-6982¬2020-2-11-18.