Теплотехнические характеристики процесса пиролиза отработанных шин
Аннотация
Ежегодное существенное пополнение количества отработанных автомобильных шин порождает серьезную экологическую проблему и делает актуальным дальнейший поиск эффективных ресурсосберегающих способов их утилизации. Растет число исследований процессов термохимической конверсии отходов шин, в том числе процесса пиролиза с получением ценных продуктов: твердой фракции (коксового остатка), жидкой углеводородной фракции (пиролизного масла) и неконденсирующейся газообразной фракции (пиролизного газа). Представлен обзор промышленных и опытно-промышленных пиролизных установок и реакторов. Для реализации непрерывного процесса наиболее перспективны вращающийся барабанный реактор, шахтный и шнековый реакторы.
Разработка новых ресурсосберегающих решений по пиролизу отходов шин требует знания теплотехнических характеристик данного процесса, включающих информацию о материальных и тепловых потоках реактора пиролиза. Представлены состав и теплотехнические свойства отходов шин, а также удельные выходы, состав и топливные свойства материальных потоков продуктов пиролиза: пиролизного газа, пиролизного масла и коксового остатка.
Информация о структуре теплового баланса установки или реактора пиролиза либо отсутствует, либо является неполной. На основе литературных данных сформирован и исследован тепловой баланс промышленной пиролизной установки со шнековыми реакторами, характеризующейся удельной теплотой термодеструкции 0,640 МДж/(кг шин). Результаты расчета коррелируют с данными, опубликованными для промышленной установки. Информация о структуре теплового баланса пиролизной камеры достаточно корректна для использования в инженерной практике.
Установлено, что удельное теплопотребление процесса пиролиза составляет 2,269 МДж/(кг шин). Оно может быть использовано при расчете пиролизных установок с иными конструкциями реакторов пиролиза.
Литература
2. The Composition of a Tyre: Typical Components. Banbury: The Waste & Resources Action Programme, 2006.
3. Ramirez-Canon А. Decomposition of Used Tyre Rubber by Pyrolysis: Enhancement of the Physical Properties of the Liquid Fraction Using a Hydrogen Stream // Environments. 2018. V. 5. Pp. 72—83.
4. Kalitko V.A. Steam-thermal Recycling of Tire Shreds: Calculation of the Rate of Explosion-proof Feed of Steam // J. Engineering Phys. and Thermophys. 2008. V. 81. No. 4. Pp. 781—786.
5. Kalitko U. Waste Tire Pyrolysis: Heat-Mass Balances & New Engineering Solutions with Steam // J. Solid Waste Techn. and Management. 2012. V. 6. Pp. 1—32.
6. Kalitko U. Triple-screw Reactor & Jet Venturi Condenser for Scrap Tire Pyrolysis Recycling with Steam [Электрон. ресурс] www.researchgate.net/publication/233965315_new_tire_pyrolysis_prospect_for_2013 (дата обращения 08.05.2021).
7. Kalitko U. Waste Moving-Stirring Bed in Thermal Processing of Auger or Kiln Pyrolysis Reactor: Math Model Engineering Solution for the Effective Cross-Section Charge of Reactors [Электрон. ресурс] www.researchgate.net/publication/275649560 (дата обращения 08.05.2021).
8. Castaldi M.J., Kwon E., Weiss B. Beneficial use of Waste Tires: an Integrated Gasification and Combustion Process Design via Thermogravimetric Analysis (TGA) of Styrene-Butadiene Rubber (SBR) and Polyisoprene (IR) // Environmental Eng. Sci. 2007. V. 24. No. 8. Pp. 1160—1178.
9. Naveed S., Malik A., Ramzan N., Akram M. A Comparative Study of Gasification of Food Waste (FW), Poultry Waste (PW), Municipal Solid Waste (MSW) and Used Tires (UT) // Nucleus. 2009. V. 46. Pp. 77—81.
10. Kiser J.V.L. Scrap-tire Pyrolysis: The Impossible Dream? // Scrap Magazine. 2002. V. 59. No. 5. Pp. 34—41.
11. Попов С.К., Ванюшкин В.Д., Валинеева А.А. Моделирование и исследование охлаждения твердых продуктов пиролиза отходов шин // Вестник МЭИ. 2020. № 6. С. 18—28.
12. Переработка отработанных автомобильных шин методом низкотемпературного пиролиза [Электрон. ресурс] www.msd.com.ua/sbornik-statej-i-informacionnyx-materialov-po-texnologiyam-pererabotki-municipalnyx-otxodov/pererabotka-otrabotannyx-avtomobilnyx-shin-metodom-nizkotemperaturnogo-piroliza (дата обращения 08.05.2021).
13. Kalitko V.A. e. a. Steam Thermolysis of Discarded Tires: Testing and Analyzing of the Specific Fuel Consumption with Tail Gas Burning, Steam Generation and Secondary Waste Slime Processing // J. Engineering Phys. and Thermophys. 2009. V. 82. No. 2. Pp. 236—245.
14. Kalitko U., Morgan Chun-Yao Wu. Tire Scrap Pyrolysis Recycling by Steaming Way: Heat-Mass Balance Solutions and Developments // Pyrolysis: Types, Processes, Industrial Sources and Products. N.-Y.: Nova Sci. Publ., 2009. Pp. 79—115.
15. Kalitko V.A. Tire Shreds Steam-Thermal Recycling Process Modernization and Development by Inherent Gas Burning with Steam // J. Engineering Phys. and Thermophys. 2010. V. 83. No. 1. Pp. 179—187.
16. Kalitko V.A. A Thermal-Hydrodynamic Lock Sealing with Steam Feeding for Tire Scrap Pyrolysis in Reactor of Screw Type // J. Engineering Phys. and Thermophys. 2010. V. 83. No. 2. Pp. 324—330.
17. • Kalitko U. Waste Tire Pyrolysis Recycling with Steaming: Heat-Mass Balances & Engineering Solutions for By-Products Quality. In: Material Recycling. Edited by D.S. Achilias. InTechOpen Publishers // Material Recycling —Trends and Perspectives. London: IntechOpen, 2012. Pp. 213—236.
18. Williams P.T. Pyrolysis of Waste Tyres: a Review // Waste Management. 2013. V. 33. No. 8. Pр. 1714—1728.
19. Hita I., Arabiourrutia M., Olazar M., Bilbao J., Arandes J.M., Castano P. Opportunities and Barriers for Producing High Quality Guels from the Pyrolysis of Scrap Tires // Renewable and Sustainable Energy Rev. 2016. V. 56. Pp. 745—759.
20. Xinxiang China [Электрон. ресурс] www.china-doing.com (дата обращения 08.05.2021).
21. ГОСТ Р 53357—2013 (ИСО 17246:2010). Топливо твердое минеральное. Технический анализ.
22. Czajczynska D. Use of Pyrolytic Gas from Waste Tire as a Fuel: A review // Energy. 2017. V. 134. Pp. 1121—1131.
23. Dinusha I. Activated Carbon from Waste Tires [Электрон. ресурс] www.researchgate.net/publication/322750723_ACTIVATED_CARBON_FROM_WASTE_TIRES?channel=doi&linkId=5a6d692f0f7e9bd4ca6c14ea&showFulltext=true (дата обращения 08.05.2021).
24. Teng H., Lin Yu-Chuan, Hsu Li-Yeh. Production of Activated Carbon from Pyrolysis of Waste Tires Impregnated with Potassium Hydroxide // J. the Air & Waste Management Association. 2000. V. 50. No. 11. Pp. 1940—1946.
25. Geng J. Fabrication of Activated Carbon Using Two-step Co-pyrolysis of Used Rubber and Sawdust // Bioresources. 2017. V. 12(4). Pp. 8641—8652.
26. Lopez F.A., Centeno T.A., Alguacil F.J., Lobato B. Distillation of Granulated Scrap Tires in a Pilot Plant // J Hazard Mater. 2011. V. 190. Pp. 285—292.
27. Gonzalez J.F., Encinar J.M., Canito J.L., Rodrıguez J.J. Pyrolysis of Automobile Tyre Waste. Influence of Operating Variables and Kinetics Study // J. Analytical and Applied Pyrolysis. 2001. V. 58—59. Pp. 667—683.
28. Zhang W, Yin X, Wu C, Chen Y. Pyrolysis of Waste Tires in a Circulating Fluidized-bed Reactor // Energy. 2001. V. 26. Pp. 385—399.
29. Zhang X., Wang T., Chang J. Vacuum Pyrolysis of Waste Tires with Basic Additives // Waste Management. 2008. V. 28. No. 11. Pp. 2301—2310.
30. Ucar S., Karagoz S., Ozkan A.R., Yanik J. Evaluation of Two Different Scrap Tires as Hydrocarbon Source by Pyrolysis // Fuel. 2005. V. 84. Pp. 1884—1892.
31. Ramirez-Canon А. Decomposition of Used Tyre Rubber by Pyrolysis: Enhancement of the Physical Properties of the Liquid Fraction Using a Hydrogen Stream // Environments. 2018. V. 5(6). Pp. 72—83.
32. Day M. Pyrolysis of Auto Shredder Residue: Experiments with a Laboratory Screw Kiln Reactor // J. Analytical and Applied Pyrolysis. 1999. V. 51(1—2). Pp. 181—200.
33. Barbooti M.M. Optimization of Pyrolysis Conditions of Scrap Tires under Inert Gas Atmosphere // J. Analytical and Applied Pyrolysis. 2004. V. 72(1). Pp. 165—170.
34. Galvagno S., Casu S., Casabianca T., Calabrese A., Cornacchia G. Pyrolysis Process for the Treatment of Scrap Tyres: Preliminary Experimental Results // Waste Management. 2002. V. 22. Pp. 917—923.
35. Li S.Q., Yao Q., Chi Y., Yan J.H., Cen K.F. Pilot-Scale Pyrolysis of Scrap Tires in a Continuous Rotary Kiln Reactor // Industrial Eng. Chem. Research. 2004. V. 43. No. 17. Pp. 5133—5145.
36. Čížková A. Comparison of Yield of Tires Pyrolysis in Laboratory and Pilot Scales // GeoSci. Eng. 2009. No. 4. Pр. 60—65.
37. Kaminsky W., Mennerich C. Pyrolysis of Synthetic Rubber in a Fluidised-bed Reactor to Yield 1,3-Butadiene, Styrene and Carbon Black // J. Analytical and Appl. Pyrolysis. 2001. V. 58—59. Pp. 803—811.
38. Williams P.T., Besler S., Taylor D.T. The Pyrolysis of Scrap Automotive Tires: The Influence of Temperature and Heating Rate on Product Composition // Fuel. 1990. V. 69. Pp. 1474—1482.
39. Boxiong S., Chunfei W., Liang C., Binbin G., Rui W. Pyrolysis of Waste Tyres: the Influence of USY Catalys/Tyre Ratio on Products // J. Analytical and Appl. Pyrolysis. 2007. V. 78. Pp. 243—249.
40. Leung D.Y.C., Yin X.L., Zhao Z.L., Xu B.Y., Chen Y. Pyrolysis of Tire Powder: Influence of Operation Variables on The Composition and Yields of Gaseous Product // Fuel Processing Technology. 2002. V. 79. Pp. 141—155.
41. Kyari M., Cunliffe A., Williams P.T. Characterisation of Oils, Gases and Char in Relation to the Pyrolysis of Different Brands of Scrap Automotive Tires // Energy and Fuels. 2005. V. 19. Pp. 1165—1173.
42. Rada E.C., Ragazzi M., Dal Maschio R., Ischia M., Panaitescu V.N. Energy Recovery from Tyres Waste Through Thermal Option // Scientific Bulletin, Politehnica University of Bucharest, Series D: Mechanical Engineering. 2012. V. 74. Pp. 201—210.
43. Williams P.T., Bottrill R.P., Cunliffe A.M. Combustion of Tyre Pyrolysis Oil // Transactions of the Institution of Chem. Engineers. 1998. V. 76. Pp. 291—301.
44. Banar M., Akyıldız V., Ozkan A., Cokaygil Z., Onay O. Characterization of Pyrolytic Oil Obtained from Pyrolysis of TDF (Tire Derived Fuel) // Energy Conversion and Management. 2012.V. 62. Pp. 22—30.
45. Белоусов В.Н., Иванов А.Н., Смородин С.Н. Термическое обезвреживание твердых бытовых отходов и отработанных автомобильных покрышек // Энергетика и автоматизация в современном обществе: Материалы II Всеросс. науч.-практ. конф. СПб: ВШТЭ СПбГУПТД, 2018. Вып. 2. С. 39—41.
46. Попов С.К., Ипполитов В.А. Решение задач высокотемпературной теплотехнологии в среде Mathсad. М.: Издат. дом МЭИ, 2009.
---
Для цитирования: Попов С.К., Ванюшкин В.Д., Сериков Э.А. Теплотехнические характеристики процесса пиролиза отработанных шин // Вестник МЭИ. 2021. № 6. С. 37—48. DOI: 10.24160/1993-6982-2021-6-37-48
#
1. Williams P.T. Pyrolysis of Waste Tyres: A Review. Waste Management. 2013;33;8:1714—1728.
2. The Composition of a Tyre: Typical Components. Banbury: The Waste & Resources Action Programme, 2006.
3. Ramirez-Canon А. Decomposition of Used Tyre Rubber by Pyrolysis: Enhancement of the Physical Properties of the Liquid Fraction Using a Hydrogen Stream. Environments. 2018;5:72—83.
4. Kalitko V.A. Steam-thermal Recycling of Tire Shreds: Calculation of the Rate of Explosion-proof Feed of Steam. J. Engineering Phys. and Thermophys. 2008;81;4:781—786.
5. Kalitko U. Waste Tire Pyrolysis: Heat-Mass Balances & New Engineering Solutions with Steam. J. Solid Waste Techn. and Management. 2012;6:1—32.
6. Kalitko U. Triple-screw Reactor & Jet Venturi Condenser for Scrap Tire Pyrolysis Recycling with Steam [Elektron. Resurs] www.researchgate.net/publication/233965315_new_tire_pyrolysis_prospect_for_2013 (Data Obrashcheniya 08.05.2021).
7. Kalitko U. Waste Moving-Stirring Bed in Thermal Processing of Auger or Kiln Pyrolysis Reactor: Math Model Engineering Solution for the Effective Cross-Section Charge of Reactors [Elektron. Resurs] www.researchgate.net/publication/275649560 (Data Obrashcheniya 08.05.2021).
8. Castaldi M.J., Kwon E., Weiss B. Beneficial use of Waste Tires: an Integrated Gasification and Combustion Process Design via Thermogravimetric Analysis (TGA) of Styrene-Butadiene Rubber (SBR) and Polyisoprene (IR). Environmental Eng. Sci. 2007;24;8:1160—1178.
9. Naveed S., Malik A., Ramzan N., Akram M. A Comparative Study of Gasification of Food Waste (FW), Poultry Waste (PW), Municipal Solid Waste (MSW) and Used Tires (UT). Nucleus. 2009;46:77—81.
10. Kiser J.V.L. Scrap-tire Pyrolysis: The Impossible Dream?. Scrap Magazine. 2002;59;5:34—41.
11. Popov S.K., Vanyushkin V.D., Valineeva A.A. Modelirovanie i Issledovanie Okhlazhdeniya Tverdykh Produktov Piroliza Otkhodov Shin. Vestnik MEI. 2020;6:18—28. (in Russian).
12. Pererabotka Otrabotannykh Avtomobil'nykh Shin Metodom Nizkotemperaturnogo Piroliza [Elektron. Resurs] www.msd.com.ua/sbornik-statej-i-informacionnyx-materialov-po-texnologiyam-pererabotki-municipalnyx-otxodov/pererabotka-otrabotannyx-avtomobilnyx-shin-metodom-nizkotemperaturnogo-piroliza (Data Obrashcheniya 08.05.2021). (in Russian).
13. Kalitko V.A. e. a. Steam Thermolysis of Discarded Tires: Testing and Analyzing of the Specific Fuel Consumption with Tail Gas Burning, Steam Generation and Secondary Waste Slime Processing. J. Engineering Phys. and Thermophys. 2009;82;2:236—245.
14. Kalitko U., Morgan Chun-Yao Wu. Tire Scrap Pyrolysis Recycling by Steaming Way: Heat-Mass Balance Solutions and Developments. Pyrolysis: Types, Processes, Industrial Sources and Products. N.-Y.: Nova Sci. Publ., 2009:79—115.
15. Kalitko V.A. Tire Shreds Steam-Thermal Recycling Process Modernization and Development by Inherent Gas Burning with Steam. J. Engineering Phys. and Thermophys. 2010;83;1:179—187.
16. Kalitko V.A. A Thermal-Hydrodynamic Lock Sealing with Steam Feeding for Tire Scrap Pyrolysis in Reactor of Screw Type. J. Engineering Phys. and Thermophys. 2010;83;2:324—330.
17. Kalitko U. Waste Tire Pyrolysis Recycling with Steaming: Heat-Mass Balances & Engineering Solutions for By-Products Quality. In: Material Recycling. Edited by D.S. Achilias. InTechOpen Publishers. Material Recycling —Trends and Perspectives. London: IntechOpen, 2012:213—236.
18. Williams P.T. Pyrolysis of Waste Tyres: a Review. Waste Management. 2013;33;8:1714—1728.
19. Hita I., Arabiourrutia M., Olazar M., Bilbao J., Arandes J.M., Castano P. Opportunities and Barriers for Producing High Quality Guels from the Pyrolysis of Scrap Tires. Renewable and Sustainable Energy Rev. 2016;56:745—759.
20. Xinxiang China [Elektron. Resurs] www.china-doing.com (Data Obrashcheniya 08.05.2021).
21. GOST R 53357—2013 (ISO 17246:2010). Toplivo Tverdoe Mineral'noe. Tekhnicheskiy Analiz. (in Russian).
22. Czajczynska D. Use of Pyrolytic Gas from Waste Tire as a Fuel: A review. Energy. 2017;134:1121—1131.
23. Dinusha I. Activated Carbon from Waste Tires [Elektron. Resurs] www.researchgate.net/publication/322750723_ACTIVATED_CARBON_FROM_WASTE_TIRES?channel=doi&linkId=5a6d692f0f7e9bd4ca6c14ea&showFulltext=true (Data Obrashcheniya 08.05.2021).
24. Teng H., Lin Yu-Chuan, Hsu Li-Yeh. Production of Activated Carbon from Pyrolysis of Waste Tires Impregnated with Potassium Hydroxide. J. the Air & Waste Management Association. 2000;50;11:1940—1946.
25. Geng J. Fabrication of Activated Carbon Using Two-step Co-pyrolysis of Used Rubber and Sawdust. Bioresources. 2017;12(4):8641—8652.
26. Lopez F.A., Centeno T.A., Alguacil F.J., Lobato B. Distillation of Granulated Scrap Tires in a Pilot Plant. J Hazard Mater. 2011;190:285—292.
27. Gonzalez J.F., Encinar J.M., Canito J.L., Rodrıguez J.J. Pyrolysis of Automobile Tyre Waste. Influence of Operating Variables and Kinetics Study. J. Analytical and Applied Pyrolysis. 2001;58—59:667—683.
28. Zhang W, Yin X, Wu C, Chen Y. Pyrolysis of Waste Tires in a Circulating Fluidized-bed Reactor. Energy. 2001;26:385—399.
29. Zhang X., Wang T., Chang J. Vacuum Pyrolysis of Waste Tires with Basic Additives. Waste Management. 2008;28;11:2301—2310.
30. Ucar S., Karagoz S., Ozkan A.R., Yanik J. Evaluation of Two Different Scrap Tires as Hydrocarbon Source by Pyrolysis. Fuel. 2005;84:1884—1892.
31. Ramirez-Canon А. Decomposition of Used Tyre Rubber by Pyrolysis: Enhancement of the Physical Properties of the Liquid Fraction Using a Hydrogen Stream. Environments. 2018;5(6):72—83.
32. Day M. Pyrolysis of Auto Shredder Residue: Experiments with a Laboratory Screw Kiln Reactor. J. Analytical and Applied Pyrolysis. 1999;51(1—2):181—200.
33. Barbooti M.M. Optimization of Pyrolysis Conditions of Scrap Tires under Inert Gas Atmosphere. J. Analytical and Applied Pyrolysis. 2004;72(1):165—170.
34. Galvagno S., Casu S., Casabianca T., Calabrese A., Cornacchia G. Pyrolysis Process for the Treatment of Scrap Tyres: Preliminary Experimental Results. Waste Management. 2002;22:917—923.
35. Li S.Q., Yao Q., Chi Y., Yan J.H., Cen K.F. Pilot-Scale Pyrolysis of Scrap Tires in a Continuous Rotary Kiln Reactor. Industrial Eng. Chem. Research. 2004;43;17:5133—5145.
36. Čížková A. Comparison of Yield of Tires Pyrolysis in Laboratory and Pilot Scales. GeoSci. Eng. 2009;4:60—65.
37. Kaminsky W., Mennerich C. Pyrolysis of Synthetic Rubber in a Fluidised-bed Reactor to Yield 1,3-Butadiene, Styrene and Carbon Black. J. Analytical and Appl. Pyrolysis. 2001;58—59:803—811.
38. Williams P.T., Besler S., Taylor D.T. The Pyrolysis of Scrap Automotive Tires: The Influence of Temperature and Heating Rate on Product Composition. Fuel. 1990;69:1474—1482.
39. Boxiong S., Chunfei W., Liang C., Binbin G., Rui W. Pyrolysis of Waste Tyres: the Influence of USY Catalys/Tyre Ratio on Products. J. Analytical and Appl. Pyrolysis. 2007;78:243—249.
40. Leung D.Y.C., Yin X.L., Zhao Z.L., Xu B.Y., Chen Y. Pyrolysis of Tire Powder: Influence of Operation Variables on The Composition and Yields of Gaseous Product. Fuel Processing Technology. 2002;79:141—155.
41. Kyari M., Cunliffe A., Williams P.T. Characterisation of Oils, Gases and Char in Relation to the Pyrolysis of Different Brands of Scrap Automotive Tires. Energy and Fuels. 2005;19:1165—1173.
42. Rada E.C., Ragazzi M., Dal Maschio R., Ischia M., Panaitescu V.N. Energy Recovery from Tyres Waste Through Thermal Option. Scientific Bulletin, Politehnica University of Bucharest, Series D: Mechanical Engineering. 2012; 74:201—210.
43. Williams P.T., Bottrill R.P., Cunliffe A.M. Combustion of Tyre Pyrolysis Oil. Transactions of the Institution of Chem. Engineers. 1998;76:291—301.
44. Banar M., Akyıldız V., Ozkan A., Cokaygil Z., Onay O. Characterization of Pyrolytic Oil Obtained from Pyrolysis of TDF (Tire Derived Fuel). Energy Conversion and Management. 2012;62:22—30.
45. Belousov V.N., Ivanov A.N., Smorodin S.N. Termicheskoe Obezvrezhivanie Tverdykh Bytovykh Otkhodov i Otrabotannykh Avtomobil'nykh Pokryshek. Energetika i Avtomatizatsiya v Sovremennom Obshchestve: Materialy II Vseross. Nauch.-prakt. Konf. SPb: VSHTE SPbGUPTD, 2018;2:39—41. (in Russian).
46. Popov S.K., Ippolitov V.A. Reshenie Zadach Vysokotemperaturnoy Teplotekhnologii v Srede Mathsad. M.: Izdat. Dom MEI, 2009. (in Russian).
---
For citation: Popov S.K., Vanyushkin V.D., Serikov E.A. Thermal Characteristics of the Waste Tire Pyrolysis Process. Bulletin of MPEI. 2021;6:37—48. (in Russian). DOI: 10.24160/1993-6982-2021-6-37-48