Математическая модель плазмотермической очистки расплава кремния в условиях магнитогидродинамического перемешивания
Аннотация
Представлены результаты математического моделирования плазмотермической очистки расплава кремния в условиях МГД-перемешивания расплава. Детально рассмотрен процесс удаления примесей трудноудаляемых вакуумным рафинированием примесей Al, Ca, Cu, Mg. Показано, что в области горячих пятен обеспечиваются условия для эффективного удаления данных примесей. Приведены зависимости между максимальной температурой в области пятна плазмотермического воздействия на расплав, диаметром пятна и мощностью теплового потока. Результаты выполненных исследований использованы при разработке технологии очистки кремния и проектировании установок для реализации данного процесса.
Литература
2. Braga A.F.B. e. a. New Processes for the Production of Solar-grade Polycrystalline Silicon: a review // Solar Energy Materials and Solar Cells. 2008. V. 92. Pp. 418—424.
3. Delannoy Y. Purification of Silicon for Photovoltaic Applications // J. Crystal Growth. 2012. V. 360. Pp. 61—67.
4. Woosoon L., Wooyoung Y., Choonghwan P. Purification of Metallurgical-grade Silicon in Fractional Melting Process // J. Crystal Growth. 2009. V. 312. Pp. 146—148.
5. Pengting Li e. a. Effect of Alternating Magnetic Field on the Removal of Metal Impurities in Silicon Ingot by Directional Solidification // J. Crystal Growth. 2016. V. 437. Pp. 14—19.
6. Kudla Ch. e. a. Crystallization of 640 kg Mc-silicon Ingots under Traveling Magnetic Field by Using a Heater-magnet Module // J. Crystal Growth. 2013. V. 365. Pp. 54—58.
7. Nakamura N. e. a. Boron Removal in Molten Silicon with Steam Added Plasma Melting Method // J. Japan Institute of Metals. 2003. V. 67. Pp. 583—589
8. Altenberend J., Chichignoud G., Delannoy Y. Study of Mass Transfer in Gas Blowing Processes for Silicon Purification // Metallurgical and Materials Trans. E. 2017. V. 4(1). Pp. 41—51.
9. Alemany C. e. a. Refining of Metallurgical-grade Silicon by Inductive Plasma // Solar Energy Materials and Solar Cells. 2002. V. 72. Pp. 41—48.
10. Karabanov S.M. e. a. Study of Interaction of a Plasma Jet with the Silicon Melt Surface under the Conditions of Its High Turbulence // Proc. Environment and Electrical Eng. and IEEE Industrial and Commercial Power Systems Europe Intern. Conf. 2017. Pp. 1—5.
11. Karabanov S.M. e. a. Mathematical Modeling and Experimental Research of the Method of Plasma Chemical Purification of Metallurgical-grade Silicon // Proc. XVI Intern. Conf. Environment and Electrical Eng. Florence, 2016. Pp. 1—5.
12. Zheng S.S. e. a. Mass Transfer of Phosphorus in Silicon Melts Under Vacuum Induction Refining // Metallurgical and Materials Trans. B. 2010. V. 41. P. 1268.
13. Safarian J., Tangstad M. Vacuum Refining of Molten Silicon // Metallurgical and Materials Trans. B. 2012. V. 43(6). Pp. 1427—1445.
14. Dong W. e. a. Removal of Phosphorus in Metallurgical Grade Silicon Using Electron Beam Melting // Materials Sci. Forum. 2011. V. 675—677. Pp. 45—48.
15. Karabanov S.M. e. a. Study of Impurities Diffusion in Silicon Liquid Phase in Conditions of High Turbulence of Melt // Proceedings 33rd European Photovoltaic Solar Energy Conf. and Exhibition. Amsterdam, 2017. Pp. 501—504.
16. Yasevich V.I. e. a. Mathematical Modeling of Metallurgical-grade Silicon Plasma-сhemical Purification Process // Proc. of 32nd European Photovoltaic Solar Energy Conf. and Exhibition. Munich, 2016. Pp. 1001—1004.
17. Эспе В. Технология электровакуумных материалов. Т. 2. Силикатные материалы. М.-Л.: Энергия, 1968.
18. Lide D.R. CRC Handbook of Chemistry and Physics: a Ready-reference Book of Chemical and Physical Data. Boca Raton: CRC Press, 2003.
19. ГСССД 112—87. Литий, натрий, калий, рубидий, цезий. Давление насыщенных паров при высоких температурах.
20. Karabanov S.M. e. a. Study of the Temperature Influence on the Efficiency of Silicon Vacuum Refining under Electromagnetic Stirring // Proc. IEEE Intern. Conf. Environment and Electrical Eng. Genova, 2019. Pp. 1—5.
21. Karabanov S.M. e. a. Mathematical Modeling of Vacuum Refining of Silicon Melt under the Conditions of Electromagnetic Stirring // AIP Conf. Proc. 2018. V. 1999. Pp. 1—8.
---
Для цитирования: Карабанов С.М., Суворов Д.В., Тарабрин Д.Ю., Сливкин Е.В., Карабанов А.С., Гололобов Г.П. Математическая модель плазмотермической очистки расплава кремния в условиях магнитогидродинамического перемешивания // Вестник МЭИ. 2023. № 1. С. 145—154. DOI: 10.24160/1993-6982-2023-1-145-154.
#
1. Ceccaroli B., Ovrelid E., Pizzini S. Solar Silicon Processes: Technologies, Challenges, and Opportunities. Boca Raton: CRC Press, 2016.
2. Braga A.F.B. e. a. New Processes for the Production of Solar-grade Polycrystalline Silicon: a review. Solar Energy Materials and Solar Cells. 2008;92:418—424.
3. Delannoy Y. Purification of Silicon for Photovoltaic Applications. J. Crystal Growth. 2012;360:61—67.
4. Woosoon L., Wooyoung Y., Choonghwan P. Purification of Metallurgical-grade Silicon in Fractional Melting Process. J. Crystal Growth. 2009;312:146—148.
5. Pengting Li e. a. Effect of Alternating Magnetic Field on the Removal of Metal Impurities in Silicon Ingot by Directional Solidification. J. Crystal Growth. 2016;437:14—19.
6. Kudla Ch. e. a. Crystallization of 640 kg Mc-silicon Ingots under Traveling Magnetic Field by Using a Heater-magnet Module. J. Crystal Growth. 2013;365:54—58.
7. Nakamura N. e. a. Boron Removal in Molten Silicon with Steam Added Plasma Melting Method. J. Japan Institute of Metals. 2003;67:583—589
8. Altenberend J., Chichignoud G., Delannoy Y. Study of Mass Transfer in Gas Blowing Processes for Silicon Purification. Metallurgical and Materials Trans. E. 2017;4(1):41—51.
9. Alemany C. e. a. Refining of Metallurgical-grade Silicon by Inductive Plasma. Solar Energy Materials and Solar Cells. 2002;72:41—48.
10. Karabanov S.M. e. a. Study of Interaction of a Plasma Jet with the Silicon Melt Surface under the Conditions of Its High Turbulence. Proc. Environment and Electrical Eng. and IEEE Industrial and Commercial Power Systems Europe Intern. Conf. 2017:1—5.
11. Karabanov S.M. e. a. Mathematical Modeling and Experimental Research of the Method of Plasma Chemical Purification of Metallurgical-grade Silicon. Proc. XVI Intern. Conf. Environment and Electrical Eng. Florence, 2016:1—5.
12. Zheng S.S. e. a. Mass Transfer of Phosphorus in Silicon Melts Under Vacuum Induction Refining. Metallurgical and Materials Trans. B. 2010;41:1268.
13. Safarian J., Tangstad M. Vacuum Refining of Molten Silicon. Metallurgical and Materials Trans. B. 2012;43(6):1427—1445.
14. Dong W. e. a. Removal of Phosphorus in Metallurgical Grade Silicon Using Electron Beam Melting. Materials Sci. Forum. 2011;675—677:45—48.
15. Karabanov S.M. e. a. Study of Impurities Diffusion in Silicon Liquid Phase in Conditions of High Turbulence of Melt. Proceedings 33rd European Photovoltaic Solar Energy Conf. and Exhibition. Amsterdam, 2017:501—504.
16. Yasevich V.I. e. a. Mathematical Modeling of Metallurgical-grade Silicon Plasma-сhemical Purification Process. Proc. of 32nd European Photovoltaic Solar Energy Conf. and Exhibition. Munich, 2016:1001—1004.
17. Espe V. Tekhnologiya Elektrovakuumnykh Materialov. T. 2. Silikatnye Materialy. M.-L.: Energiya, 1968. (in Russian).
18. Lide D.R. CRC Handbook of Chemistry and Physics: a Ready-reference Book of Chemical and Physical Data. Boca Raton: CRC Press, 2003.
19. GSSSD 112—87. Litiy, Natriy, Kaliy, Rubidiy, Tseziy. Davlenie Nasyshchennykh Parov pri Vysokikh Temperaturakh. (in Russian).
20. Karabanov S.M. e. a. Study of the Temperature Influence on the Efficiency of Silicon Vacuum Refining under Electromagnetic Stirring. Proc. IEEE Intern. Conf. Environment and Electrical Eng. Genova, 2019:1—5.
21. Karabanov S.M. e. a. Mathematical Modeling of Vacuum Refining of Silicon Melt under the Conditions of Electromagnetic Stirring. AIP Conf. Proc. 2018. V. 1999:1—8.
---
For citation: Karabanov S.M., Suvorov D.V., Tarabrin D.Yu., Slivkin E.V., Karabanov A.S., Gololobov G.P. The Mathematical Model of Silicon Melt Plasma-Thermal Purification under Magnetohydrodynamic Stirring Conditions. Bulletin of MPEI. 2023;1:145—154. (in Russian). DOI: 10.24160/1993-6982-2023-1-145-154.