The Mathematical Model of Silicon Melt Plasma-Thermal Purification under Magnetohydrodynamic Stirring Conditions

Authors

  • Сергей [Sergey] Михайлович [M.] Карабанов [Karabanov]
  • Дмитрий [Dmitriy] Владимирович [V.] Суворов [Suvorov]
  • Дмитрий [Dmitriy] Юрьевич [Yu.] Тарабрин [Tarabrin]
  • Евгений [Evgeniy] Владимирович [V.] Сливкин [Slivkin]
  • Андрей [Andrey] Сергеевич [S.] Карабанов [Karabanov]
  • Геннадий [Gennadiy] Петрович [P.] Гололобов [Gololobov]

DOI:

https://doi.org/10.24160/1993-6982-2023-1-145-154

Keywords:

magnetohydrodynamic stirring, plasma-thermal purification, silicon, mathematical modeling

Abstract

The results of mathematically modeling the plasma-thermal purification of a silicon melt under the conditions of its magnetohydrodynamic stirring are presented. The process of removing Al, Ca, Cu, and Mg impurities, which are poorly amenable to removal by vacuum refining, is considered in detail. It is shown that in the hot spot area, conditions for efficient removal of these impurities are ensured. The dependences between the maximum temperature in the spot of plasma-thermal action on the melt, the spot diameter, and the heat flux power are given. The results of the performed studies were used in elaborating the silicon purification technology and designing installations for implementing this process.

Author Biographies

Сергей [Sergey] Михайлович [M.] Карабанов [Karabanov]

Dr.Sci. (Techn.), Professor of Electronic Devices Dept., Ryazan State Radio Engineering University, e-mail: smkarabanov@gmail.com

Дмитрий [Dmitriy] Владимирович [V.] Суворов [Suvorov]

Ph.D. (Techn.), Assistant Professor of Industrial Electronics Dept., Ryazan State Radio Engineering University, e-mail: dmitriy_suvorov@mail.ru

Дмитрий [Dmitriy] Юрьевич [Yu.] Тарабрин [Tarabrin]

Ph.D. (Techn.), Assistant Professor of Industrial Electronics Dept., Ryazan State Radio Engineering University, e-mail: tarabrin-dmitriy@mail.ru

Евгений [Evgeniy] Владимирович [V.] Сливкин [Slivkin]

Ph.D. (Techn.), Assistant Professor of Industrial Electronics Dept., Ryazan State Radio Engineering University, e-mail: e.slivkin@mail.ru

Андрей [Andrey] Сергеевич [S.] Карабанов [Karabanov]

Leading Engineer of the Center for Advanced Technologies and Materials, Ryazan State Radio Engineering University, e-mail: and.karabanov@gmail.com

Геннадий [Gennadiy] Петрович [P.] Гололобов [Gololobov]

Ph.D. (Techn.), Assistant Professor of Industrial Electronics Dept., Ryazan State Radio Engineering University, e-mail: gololobov.gennady@yandex.ru

References

1. Ceccaroli B., Ovrelid E., Pizzini S. Solar Silicon Processes: Technologies, Challenges, and Opportunities. Boca Raton: CRC Press, 2016.
2. Braga A.F.B. e. a. New Processes for the Production of Solar-grade Polycrystalline Silicon: a review // Solar Energy Materials and Solar Cells. 2008. V. 92. Pp. 418—424.
3. Delannoy Y. Purification of Silicon for Photovoltaic Applications // J. Crystal Growth. 2012. V. 360. Pp. 61—67.
4. Woosoon L., Wooyoung Y., Choonghwan P. Purification of Metallurgical-grade Silicon in Fractional Melting Process // J. Crystal Growth. 2009. V. 312. Pp. 146—148.
5. Pengting Li e. a. Effect of Alternating Magnetic Field on the Removal of Metal Impurities in Silicon Ingot by Directional Solidification // J. Crystal Growth. 2016. V. 437. Pp. 14—19.
6. Kudla Ch. e. a. Crystallization of 640 kg Mc-silicon Ingots under Traveling Magnetic Field by Using a Heater-magnet Module // J. Crystal Growth. 2013. V. 365. Pp. 54—58.
7. Nakamura N. e. a. Boron Removal in Molten Silicon with Steam Added Plasma Melting Method // J. Japan Institute of Metals. 2003. V. 67. Pp. 583—589
8. Altenberend J., Chichignoud G., Delannoy Y. Study of Mass Transfer in Gas Blowing Processes for Silicon Purification // Metallurgical and Materials Trans. E. 2017. V. 4(1). Pp. 41—51.
9. Alemany C. e. a. Refining of Metallurgical-grade Silicon by Inductive Plasma // Solar Energy Materials and Solar Cells. 2002. V. 72. Pp. 41—48.
10. Karabanov S.M. e. a. Study of Interaction of a Plasma Jet with the Silicon Melt Surface under the Conditions of Its High Turbulence // Proc. Environment and Electrical Eng. and IEEE Industrial and Commercial Power Systems Europe Intern. Conf. 2017. Pp. 1—5.
11. Karabanov S.M. e. a. Mathematical Modeling and Experimental Research of the Method of Plasma Chemical Purification of Metallurgical-grade Silicon // Proc. XVI Intern. Conf. Environment and Electrical Eng. Florence, 2016. Pp. 1—5.
12. Zheng S.S. e. a. Mass Transfer of Phosphorus in Silicon Melts Under Vacuum Induction Refining // Metallurgical and Materials Trans. B. 2010. V. 41. P. 1268.
13. Safarian J., Tangstad M. Vacuum Refining of Molten Silicon // Metallurgical and Materials Trans. B. 2012. V. 43(6). Pp. 1427—1445.
14. Dong W. e. a. Removal of Phosphorus in Metallurgical Grade Silicon Using Electron Beam Melting // Materials Sci. Forum. 2011. V. 675—677. Pp. 45—48.
15. Karabanov S.M. e. a. Study of Impurities Diffusion in Silicon Liquid Phase in Conditions of High Turbulence of Melt // Proceedings 33rd European Photovoltaic Solar Energy Conf. and Exhibition. Amsterdam, 2017. Pp. 501—504.
16. Yasevich V.I. e. a. Mathematical Modeling of Metallurgical-grade Silicon Plasma-сhemical Purification Process // Proc. of 32nd European Photovoltaic Solar Energy Conf. and Exhibition. Munich, 2016. Pp. 1001—1004.
17. Эспе В. Технология электровакуумных материалов. Т. 2. Силикатные материалы. М.-Л.: Энергия, 1968.
18. Lide D.R. CRC Handbook of Chemistry and Physics: a Ready-reference Book of Chemical and Physical Data. Boca Raton: CRC Press, 2003.
19. ГСССД 112—87. Литий, натрий, калий, рубидий, цезий. Давление насыщенных паров при высоких температурах.
20. Karabanov S.M. e. a. Study of the Temperature Influence on the Efficiency of Silicon Vacuum Refining under Electromagnetic Stirring // Proc. IEEE Intern. Conf. Environment and Electrical Eng. Genova, 2019. Pp. 1—5.
21. Karabanov S.M. e. a. Mathematical Modeling of Vacuum Refining of Silicon Melt under the Conditions of Electromagnetic Stirring // AIP Conf. Proc. 2018. V. 1999. Pp. 1—8.
---
Для цитирования: Карабанов С.М., Суворов Д.В., Тарабрин Д.Ю., Сливкин Е.В., Карабанов А.С., Гололобов Г.П. Математическая модель плазмотермической очистки расплава кремния в условиях магнитогидродинамического перемешивания // Вестник МЭИ. 2023. № 1. С. 145—154. DOI: 10.24160/1993-6982-2023-1-145-154.
#
1. Ceccaroli B., Ovrelid E., Pizzini S. Solar Silicon Processes: Technologies, Challenges, and Opportunities. Boca Raton: CRC Press, 2016.
2. Braga A.F.B. e. a. New Processes for the Production of Solar-grade Polycrystalline Silicon: a review. Solar Energy Materials and Solar Cells. 2008;92:418—424.
3. Delannoy Y. Purification of Silicon for Photovoltaic Applications. J. Crystal Growth. 2012;360:61—67.
4. Woosoon L., Wooyoung Y., Choonghwan P. Purification of Metallurgical-grade Silicon in Fractional Melting Process. J. Crystal Growth. 2009;312:146—148.
5. Pengting Li e. a. Effect of Alternating Magnetic Field on the Removal of Metal Impurities in Silicon Ingot by Directional Solidification. J. Crystal Growth. 2016;437:14—19.
6. Kudla Ch. e. a. Crystallization of 640 kg Mc-silicon Ingots under Traveling Magnetic Field by Using a Heater-magnet Module. J. Crystal Growth. 2013;365:54—58.
7. Nakamura N. e. a. Boron Removal in Molten Silicon with Steam Added Plasma Melting Method. J. Japan Institute of Metals. 2003;67:583—589
8. Altenberend J., Chichignoud G., Delannoy Y. Study of Mass Transfer in Gas Blowing Processes for Silicon Purification. Metallurgical and Materials Trans. E. 2017;4(1):41—51.
9. Alemany C. e. a. Refining of Metallurgical-grade Silicon by Inductive Plasma. Solar Energy Materials and Solar Cells. 2002;72:41—48.
10. Karabanov S.M. e. a. Study of Interaction of a Plasma Jet with the Silicon Melt Surface under the Conditions of Its High Turbulence. Proc. Environment and Electrical Eng. and IEEE Industrial and Commercial Power Systems Europe Intern. Conf. 2017:1—5.
11. Karabanov S.M. e. a. Mathematical Modeling and Experimental Research of the Method of Plasma Chemical Purification of Metallurgical-grade Silicon. Proc. XVI Intern. Conf. Environment and Electrical Eng. Florence, 2016:1—5.
12. Zheng S.S. e. a. Mass Transfer of Phosphorus in Silicon Melts Under Vacuum Induction Refining. Metallurgical and Materials Trans. B. 2010;41:1268.
13. Safarian J., Tangstad M. Vacuum Refining of Molten Silicon. Metallurgical and Materials Trans. B. 2012;43(6):1427—1445.
14. Dong W. e. a. Removal of Phosphorus in Metallurgical Grade Silicon Using Electron Beam Melting. Materials Sci. Forum. 2011;675—677:45—48.
15. Karabanov S.M. e. a. Study of Impurities Diffusion in Silicon Liquid Phase in Conditions of High Turbulence of Melt. Proceedings 33rd European Photovoltaic Solar Energy Conf. and Exhibition. Amsterdam, 2017:501—504.
16. Yasevich V.I. e. a. Mathematical Modeling of Metallurgical-grade Silicon Plasma-сhemical Purification Process. Proc. of 32nd European Photovoltaic Solar Energy Conf. and Exhibition. Munich, 2016:1001—1004.
17. Espe V. Tekhnologiya Elektrovakuumnykh Materialov. T. 2. Silikatnye Materialy. M.-L.: Energiya, 1968. (in Russian).
18. Lide D.R. CRC Handbook of Chemistry and Physics: a Ready-reference Book of Chemical and Physical Data. Boca Raton: CRC Press, 2003.
19. GSSSD 112—87. Litiy, Natriy, Kaliy, Rubidiy, Tseziy. Davlenie Nasyshchennykh Parov pri Vysokikh Temperaturakh. (in Russian).
20. Karabanov S.M. e. a. Study of the Temperature Influence on the Efficiency of Silicon Vacuum Refining under Electromagnetic Stirring. Proc. IEEE Intern. Conf. Environment and Electrical Eng. Genova, 2019:1—5.
21. Karabanov S.M. e. a. Mathematical Modeling of Vacuum Refining of Silicon Melt under the Conditions of Electromagnetic Stirring. AIP Conf. Proc. 2018. V. 1999:1—8.
---
For citation: Karabanov S.M., Suvorov D.V., Tarabrin D.Yu., Slivkin E.V., Karabanov A.S., Gololobov G.P. The Mathematical Model of Silicon Melt Plasma-Thermal Purification under Magnetohydrodynamic Stirring Conditions. Bulletin of MPEI. 2023;1:145—154. (in Russian). DOI: 10.24160/1993-6982-2023-1-145-154.

Published

2022-10-24

Issue

Section

Technology and Equipment for the production of Materials and Electronic Devices (2.2.3)