On Analyzing Various Types of Luminescence for Optimizing the Characteristics of Phosphor-enhanced Lighting Devices
DOI:
https://doi.org/10.24160/1993-6982-2023-5-146-155Keywords:
phosphor, energy efficiency, emission and absorption spectra, lighting device, optoelectronic devices and systemsAbstract
The article describes the purpose, scope, and main parameters of lighting systems using phosphor. The technology for obtaining phosphors is described. Their energy output and inertia are estimated. The data on the light output of the LED and the laser lighting device are given. The necessity of studying various types of luminescence to optimize the characteristics of phosphor-enhanced lighting devices is substantiated. The advantages and disadvantages of phosphor LEDs are defined. The operation principle of activators for phosphors is considered. The emission and absorption spectra of an LED made using RGB technology, the spectrum of an LED made using luminescent technology, and a laser lighting device with a phosphor emitter are given. The technological process for manufacturing phosphors is described. It is shown that phosphors of different compositions provide luminescence in different regions of the spectrum. For development of “white” light sources, the spectrum of which is maximally close to the sunlight spectrum, it is necessary to use photophosphors based on calcium halophosphates activated with Mn and Sb ions.
References
2. Žukauskas A., Vaicekauskas R., Shur M. Solid-state Lamps with Optimized Color Saturation Ability // Optics Express. 2010. V. 18. No. 3. Pp. 2287—2295.
3. Chang C.-Y. e. a. Broadening Phosphor-converted Light-emitting Diode Emission: Controlling Disorder // Chemistry of Materials. 2022. V. 34(22). Pp. 10190—10199.
4. Бадгутдинов М.Л. и др. Спектры люминесценции, эффективность и цветовые характеристики светодиодов белого свечения на основе p-n-гетероструктур InGaN/GaN, покрытых люминофорами // Физика и техника полупроводников. 2006. Т. 40. № 6. С. 758—763.
5. Preuster P., Wasserscheid P., Papp C. Liquid Organic Hydrogen Carriers (LOHCS): Toward a Hydrogen-free Hydrogen Economy // Accounts of Chem. Research. 2017. V. 50(1). Pp. 74—85.
6. Burhan M., Shahzad M.W., Ng K.C. Hydrogen at the Rooftop: Compact CPV-hydrogen System to Convert Sunlight to Hydrogen // Appl. Thermal Eng. 2018. V. 132. С. 154—164.
7. George N.C., Denault K.A., Seshadri R. Phosphors for Solid-state White Lighting // Annual Rev. Mater. Res. 2013. V. 43. Pp. 481—501.
8. Kolmann S.J., Chan B., Jordan M.J.T. Modelling the Interaction of Molecular Hydrogen with Lithium-doped Hydrogen Storage Materials // Chem. Phys. Lett. 2008. V. 467. No. 1—3. Pp. 126—130.
9. Shirasaki, Y., Supran, G.J., Bawendi, M.G., Bulović, V. Emergence of Colloidal Quantum-dot Light-emitting Technologies // Nature Photonics. 2013. V. 7(1). Pp. 13—23.
10. Jiang H.-L., Singh S.K., Yan J.-M., Zhang X.-B., Xu Q. Liquid-phase Chemical Hydrogen Storage: Catalytic Hydrogen Generation under Ambient Conditions // Chemistry and Sustainability, Energy and Materials. 2010. V. 3. No. 5. Pp. 541—549.
11. Пат. № 197045 РФ. Светопередающий модуль системы беспроводной связи по технологии VLC / Скворцов А.А., Зуев С.М. // Бюл. изобрет. 2020. № 9.
12. Li Y., Yang R.T. Hydrogen Storage in Metal-organic Frameworks by Bridged Hydrogen Spillover // J. American Chem. Soc. 2006. V. 128(25). Pp. 8136—8137.
13. Kamegawa A., Okada M. Hydrogen Storage Technology in High Pressure Science Storaging Tank Engineering Engineering and Hydrogen Storage Media // Koatsuryoku No Kagaku To Gijutsu. 2007. V. 17. No. 2. Pp. 173—179.
14. Зуев С.М., Варламов Д.О., Кукса В.В. К анализу характеристик лазерного осветительного устройства // Приборы и техника эксперимента. 2021. № 6. С. 57—62.
15. Tarasov B.P., Lototskii M.V., Yartys' V.A. Problem of Hydrogen Storage and Prospective Uses of Hydrides for Hydrogen Accumulation // Russian J. General Chem. 2007. V. 77(4). Pp. 694—711.
16. Grigoriev S.A., Porembsky V.I., Fateev V.N. Pure Hydrogen Production by PEM Electrolysis for Hydrogen Energy // Intern. J. Hydrogen Energy. 2006. V. 31(2). Pp. 171—175.
17. Gong L. e. a. Spontaneous Ignition of High-pressure Hydrogen During its Sudden Release into Hydrogen/air mixtures // Intern. J. Hydrogen Energy. 2018. V. 43(52). Pp. 23558—23567.
18. Aminov R.Z., Egorov A.N. Hydrogen-oxygen Steam Generation for a Closed Hydrogen Combustion Cycle // Intern. J. Hydrogen Energy. 2019. V. 44(21). Pp. 11161—11167.
19. Startsev A.N. Hydrogen Sulfide as a Source of Hydrogen Production // Russian Chem. Bull. 2017. V. 66(8). Pp. 1378—1397.
20. Chen L., Lin C.C., Yeh C.W., Liu R.S. Light Converting Inorganic Phosphors for White Light-emitting Diodes // Materials. 2010. V. 3. Pp. 2172—2195.
21. Wang F., Wang W., Zhang L., Zheng J., Jin Y., Zhang J. Luminescence Properties and Its Red Shift of Blue-emitting Phosphor Na3YSi3O9:Ce3 + for UV LED // RSC Adv. 2017. V. 7. Pp. 27422—27430.
22. Вавилов С.И. Собрание сочинений. Т. 2. М.: Изд-во АН СССР, 1952.
23. Лосев О.В. Фотоэлектрический эффект в любом активном слое карборунда // Журнал технической физики. 1931. Т. 1. № 7. С. 718—724.
24. Nakamura S. InGaN/AlGaN Blue‐light‐emitting Diodes // J. Vacuum Sci. & Technol. 1995. A13. Pp. 705—710.
25. Чукова Ю.П. Антистоксова люминесценция и новые возможности ее применения. М.: Советское радио, 1980.
26. Близнюк В.В., Ивакин Ю.Д., Коваль О.И., Мансурова Н.Г., Арсеньев И.П. Спектры стоксовской и антистоксовской люминесценции гидроксиапатита кальция // Шумовые и деградационные процессы в полупроводниковых приборах: Материалы докл. Междунар. науч.-техн. семинара. М.: Изд-во НИУ «МЭИ», 2009.
---
Для цитирования: Зуев С.М. К анализу различных типов люминесценции для оптимизации характеристик люминофорных осветительных устройств // Вестник МЭИ. 2023. № 5. С. 146—155. DOI: 10.24160/1993-6982-2023-5-146-155
---
Работа выполнена при поддержке: Российского научного фонда (грант № 23-29-00079), https://rscf.ru/project/23-29-00079/
#
1. Gurvich A.M. Vvedenie v Fizicheskuyu Khimiyu Kristallofosforov. M.: Vysshaya Shkola, 1971. (in Russian).
2. Žukauskas A., Vaicekauskas R., Shur M. Solid-state Lamps with Optimized Color Saturation Ability. Optics Express. 2010;18;3:2287—2295.
3. Chang C.-Y. e. a. Broadening Phosphor-converted Light-emitting Diode Emission: Controlling Disorder. Chemistry of Materials. 2022;34(22):10190—10199.
4. Badgutdinov M.L. i dr. Spektry Lyuminestsentsii, Effektivnost' i Tsvetovye Kharakteristiki Svetodiodov Belogo Svecheniya na Osnove p-n-Geterostruktur InGaN/GaN, Pokrytykh Lyuminoforami. Fizika i Tekhnika Poluprovodnikov. 2006;40;6:758—763. (in Russian).
5. Preuster P., Wasserscheid P., Papp C. Liquid Organic Hydrogen Carriers (LOHCS): Toward a Hydrogen-free Hydrogen Economy. Accounts of Chem. Research. 2017;50(1):74—85.
6. Burhan M., Shahzad M.W., Ng K.C. Hydrogen at the Rooftop: Compact CPV-hydrogen System to Convert Sunlight to Hydrogen. Appl. Thermal Eng. 2018;132:154—164.
7. George N.C., Denault K.A., Seshadri R. Phosphors for Solid-state White Lighting. Annual Rev. Mater. Res. 2013;43:481—501.
8. Kolmann S.J., Chan B., Jordan M.J.T. Modelling the Interaction of Molecular Hydrogen with Lithium-doped Hydrogen Storage Materials. Chem. Phys. Lett. 2008;467;1—3:126—130.
9. Shirasaki, Y., Supran, G.J., Bawendi, M.G., Bulović, V. Emergence of Colloidal Quantum-dot Light-emitting Technologies. Nature Photonics. 2013;7(1):13—23.
10. Jiang H.-L., Singh S.K., Yan J.-M., Zhang X.-B., Xu Q. Liquid-phase Chemical Hydrogen Storage: Catalytic Hydrogen Generation under Ambient Conditions. Chemistry and Sustainability, Energy and Materials. 2010;3;5:541—549.
11. Pat № 197045 RF. Svetoperedayushchiy Modul' Sistemy Besprovodnoy Svyazi po Tekhnologii VLC. Skvortsov A.A., Zuev S.M. Byul. Izobret. 2020;9. (in Russian).
12. Li Y., Yang R.T. Hydrogen Storage in Metal-organic Frameworks by Bridged Hydrogen Spillover. J. American Chem. Soc. 2006;128(25):8136—8137.
13. Kamegawa A., Okada M. Hydrogen Storage Technology in High Pressure Science Storaging Tank Engineering Engineering and Hydrogen Storage Media. Koatsuryoku No Kagaku To Gijutsu. 2007;17;2:173—179.
14. Zuev S.M., Varlamov D.O., Kuksa V.V. K Analizu Kharakteristik Lazernogo Osvetitel'nogo Ustroystva. Pribory i Tekhnika Eksperimenta. 2021;6:57—62. (in Russian).
15. Tarasov B.P., Lototskii M.V., Yartys' V.A. Problem of Hydrogen Storage and Prospective Uses of Hydrides for Hydrogen Accumulation. Russian J. General Chem. 2007;77(4):694—711.
16. Grigoriev S.A., Porembsky V.I., Fateev V.N. Pure Hydrogen Production by PEM Electrolysis for Hydrogen Energy. Intern. J. Hydrogen Energy. 2006;31(2):171—175.
17. Gong L. e. a. Spontaneous Ignition of High-pressure Hydrogen During its Sudden Release into Hydrogen/air mixtures. Intern. J. Hydrogen Energy. 2018;43(52):23558—23567.
18. Aminov R.Z., Egorov A.N. Hydrogen-oxygen Steam Generation for a Closed Hydrogen Combustion Cycle. Intern. J. Hydrogen Energy. 2019;44(21):11161—11167.
19. Startsev A.N. Hydrogen Sulfide as a Source of Hydrogen Production. Russian Chem. Bull. 2017;66(8):1378—1397.
20. Chen L., Lin C.C., Yeh C.W., Liu R.S. Light Converting Inorganic Phosphors for White Light-emitting Diodes. Materials. 2010;3:2172—2195.
21. Wang F., Wang W., Zhang L., Zheng J., Jin Y., Zhang J. Luminescence Properties and Its Red Shift of Blue-emitting Phosphor Na3YSi3O9:Ce3 + for UV LED. RSC Adv. 2017;7:27422—27430.
22. Vavilov S.I. Sobranie Sochineniy. T. 2. M.: Izd-vo AN SSSR, 1952. (in Russian).
23. Losev O.V. Fotoelektricheskiy Effekt v Lyubom Aktivnom Sloe Karborunda. Zhurnal Tekhnicheskoy Fiziki. 1931;1;7:718—724. (in Russian).
24. Nakamura S. InGaN/AlGaN Blue‐light‐emitting Diodes. J. Vacuum Sci. & Technol. 1995. A13:705—710.
25. Chukova Yu.P. Antistoksova Lyuminestsentsiya i Novye Vozmozhnosti Ee Primeneniya. M.: Sovetskoe Radio, 1980. (in Russian).
26. Bliznyuk V.V., Ivakin Yu.D., Koval' O.I., Mansurova N.G., Arsen'ev I.P. Spektry Stoksovskoy i Antistoksovskoy Lyuminestsentsii Gidroksiapatita Kal'tsiya. Shumovye i Degradatsionnye Protsessy v Poluprovodnikovykh Priborakh: Materialy Dokl. Mezhdunar. Nauch.-tekhn. Seminara. M.: Izd-vo NIU «MEI», 2009. (in Russian)
---
For citation: Zuev S.M. On Analyzing Various Types of Luminescence for Optimizing the Characteristics of Phosphor-enhanced Lighting Devices. Bulletin of MPEI. 2023;5:146—155. (in Russian). DOI: 10.24160/1993-6982-2023-5-146-155
---
The work is executed at support: Russian Science Foundation (Grant No. 23-29-00079), https://rscf.ru/project/23-29-00079/

