Space-vector Modulation Algorithms and Base Vectors of a Seven-phase Motor Winding

Authors

  • Владимир [Vladimir] Михайлович [M.] Терешкин [Tereshkin]
  • Адельша [Adelsha] Мубарович [M.] Рафиков [Rafikov]
  • Дмитрий [Dmitriy] Анатольевич [A.] Гришин [Grishin]
  • Сергей [Sergey] Павлович [P.] Баландин [Balandin]
  • Вячеслав [Vyacheslav] Владимирович [V.] Терешкин [Tereshkin]

DOI:

https://doi.org/10.24160/1993-6982-2023-6-41-50

Keywords:

space-vector modulation, seven-phase motor winding, moduli of the resulting vectors of discrete states, ratios of the seven-phase motor line-to-line voltages, projection of a cube’s seven vertices onto a plane

Abstract

Currently, the application field of electric traction systems based on motors with a rotating field (synchronous and asynchronous) is expanding significantly. This is facilitated by progress in power electronics, microcontrollers and information technologies, which created a basis for vector control of motors to be technically implemented. One of the lines in which modern electric traction systems are developed is elaboration of a frequency-controlled electric drive based on a multiphase motor with a vector controller.

The features of a seven-phase winding in implementing spatial vector modulation algorithms are studied, and similarities between the location of the seven-phase electromechanical system base vectors’ vertices and the projections of a cube’s seven vertices onto a plane are established.

The aim of the work is to show that the ratios of the seven-phase winding line-to-line voltages are equal to the modules of the resulting voltage vectors of discrete states (base vector modules) produced by the converter digital codes in implementing space-vector modulation algorithms and to establish regularities between the location of the seven-phase electromechanical system base vectors’ vertices and the location of projections of a cube’s seven vertices on a plane.

In performing the accomplished theoretical studies, methods for constructing base vectors proceeding from their basis were applied. Using trigonometry manipulations, analytical expressions for the base vectors (resulting vectors of discrete states) were derived. The obtained study results have been tested experimentally on a setup constructed for studying the space-vector modulation of multiphase motors.

The work may be of interest for developers of electric drives based on multiphase motors (in particular, a seven-phase motor with a vector controller) and is also of theoretical importance, since a relationship between electrical engineering and geometric parameters has been established.

Author Biographies

Владимир [Vladimir] Михайлович [M.] Терешкин [Tereshkin]

Ph.D. (Techn.), Ufa University of Science and Technology, e-mail: tvm53@mail.ru

Адельша [Adelsha] Мубарович [M.] Рафиков [Rafikov]

Ph.D. (Techn.), Leading Engineer, CJSC «Canopus», Zlatoust, e-mail: fram_ram@mail.ru

Дмитрий [Dmitriy] Анатольевич [A.] Гришин [Grishin]

Electronics Engineer, LLC A&T Technologies, e-mail: lowrat@mail.ru

Сергей [Sergey] Павлович [P.] Баландин [Balandin]

Ph.D. (Phys.-Math.), Assistant Professor of Artificial Intelligence and Advanced Mathematical Research Dept., Ufa University of Science and Technology, e-mail: balandin.matem@yandex.ru

Вячеслав [Vyacheslav] Владимирович [V.] Терешкин [Tereshkin]

Ph.D-student of Institute for Metals Superplasticity Problems of the Russian Academy
of Sciences, e-mail: stierishkin@mail.ru

References

1. Electric Vehicles — Analysis — IEA [Электрон. ресурс] URL: https://www.iea.org/reports/electric-vehicles (дата обращения 20.01.2023).
2. Vosswinkel М., Lohner А. Desing of Gearless Wheel Hub Motor for BEV Based on a Switched Reluctance Machine // Proc. EVS30 Symp. Stuttgart, 2017.
3. Vosswinkel M., Lohner A., Platte V., Hirche T. Design, Production and Verification of a Switched-Reluctance Wheel Hub Drive Train for Battery Electric Vehicles // World Electric Vehicle J. 2019. No. 10(4). Pp. 82—98.
4. Электровоз грузовой постоянного тока 2ЭС10 (Гранит) с асинхронными тяговыми электродвигателями [Электрон. ресурс] https://www.twirpx.com/search (дата обращения 20.01.2023).
5. Gonzalez-Prieto A. e. a. Symmetrical Six-phase Induction Machines: a Solution for Multiphase Direct Control Strategies // Proc. IEEE Intern. Conf. Industrial Technol. 2021. Pp. 1362—1367.
6. Barrero F., Rodas J. Control of Power Electronics Converters and Electric Motor Drives // Energies. 2021. V. 14(15). P. 4591.
7. Rubino S., Dordevic O., Bojoi R., Levi E. Modular Vector Control of Multi-three-phase Permanent Magnet Synchronous Motors // IEEE Transactions on Industrial Electronics. 2021. V. 68(10). Pp. 9136—9147.
8. Slunjski M., Stiscia O., Jones M., Levi E. General Torque Enhancement Approach for a Nine-phase Surface PMSM with Built-in Fault Tolerance // IEEE Trans. on Industrial Electronics. 2021. V. 68(8). Pp. 6412—6423.
9. Bermúdez M., Barrero F., Martín C., Perales M. Performance Analysis of Direct Torque Controllers in Five-phase Electrical Drives // Appl. Sci. 2021. V. 11(24). P. 11964.
10. Yepes A.G., Doval-Gandoy J. Overmodulation Method with Adaptive x-y Current Limitation for Five-phase Induction Motor Drives // IEEE Trans. Industrial Electronics. 2022. V. 69(3). Pp. 2240—2251.
11. Голубев А.Н., Алейников А.В. Алгоритм управления, улучшающий вибросиловые характеристики многофазного магнитоэлектрического электропривода // Вестник Ивановского гос. энергетического ун-та. 2021. № 6. С. 38—44.
12. Алейников А.В., Голубев А.Н. Разработка алгоритма управления, уменьшающего вибрации многофазного синхронного электродвигателя // Актуальные проблемы электроэнергетики: Сб. науч.-техн. статей конф. Нижний Новгород, 2021. С. 69—75.
13. Томасов В.С., Усольцев А.А., Моравец М., Щепанковский П., Стшелецкий Р. Несимметричные режимы в многофазных двигателях и приводах // Электротехника. 2021. № 7. С. 2—12.
14. Терешкин В.М., Гришин Д.А., Сергеев Н.А., Терешкин В.В. Модули результирующих векторов напряжения дискретных состояний и их связь с величинами линейных напряжений семифазной симметричной обмотки // Вестник МЭИ. 2022. № 3. С. 111—119.
15. Терешкин В.М., Гришин Д.А., Терешкин В.В. Аппаратно-программный комплекс для исследования пространственно-векторной модуляции напряжения в многофазных двигателях // Состояние и перспективы развития электро- и теплотехнологии (XXI Бенардосовские чтения): Материалы Междунар. науч.-техн. конф. посвященной 140-летию изобретения электросварки Н.Н. Бенардосом. Иваново, 2021. С. 63—68.
16. Многоугольник Петри [Электрон. ресурс] https://ru.wikipedia.org/wiki/Многоугольник_Петри (дата обращения 15.02.23).
17. Терешкин В.М., Гришин Д.А., Сергеев Н.А., Терешкин В.В. Развитие методов фазовой манипуляции выходного напряжения преобразователя применительно к семифазному двигателю // Вестник МЭИ. 2022. № 6. С. 21—29.
---
Для цитирования: Терешкин В.М., Рафиков А.М., Гришин Д.А., Баландин С.П., Терешкин В.В. Алгоритмы пространственно-векторной модуляции и базовые векторы семифазной обмотки двигателя // Вестник МЭИ. 2023. № 6. С. 41—50. DOI: 10.24160/1993-6982-2023-6-41-50
#
1. Electric Vehicles — Analysis — IEA [Elektron. Resurs] URL: https://www.iea.org/reports/electric-vehicles (Data Obrashcheniya 20.01.2023).
2. Vosswinkel M., Lohner A. Desing of Gearless Wheel Hub Motor for BEV Based on a Switched Reluctance Machine. Proc. EVS30 Symp. Stuttgart, 2017.
3. Vosswinkel M., Lohner A., Platte V., Hirche T. Design, Production and Verification of a Switched-Reluctance Wheel Hub Drive Train for Battery Electric Vehicles. World Electric Vehicle J. 2019;10(4):82—98.
4. Elektrovoz Gruzovoy Postoyannogo Toka 2ES10 (Granit) s Asinkhronnymi Tyagovymi Elektrodvigatelyami [Elektron. Resurs] https://www.twirpx.com/search (Data Obrashcheniya 20.01.2023). (in Russian).
5. Gonzalez-Prieto A. e. a. Symmetrical Six-phase Induction Machines: a Solution for Multiphase Direct Control Strategies. Proc. IEEE Intern. Conf. Industrial Technol. 2021:1362—1367.
6. Barrero F., Rodas J. Control of Power Electronics Converters and Electric Motor Drives. Energies. 2021;14(15):4591.
7. Rubino S., Dordevic O., Bojoi R., Levi E. Modular Vector Control of Multi-three-phase Permanent Magnet Synchronous Motors. IEEE Transactions on Industrial Electronics. 2021;68(10):9136—9147.
8. Slunjski M., Stiscia O., Jones M., Levi E. General Torque Enhancement Approach for a Nine-phase Surface PMSM with Built-in Fault Tolerance. IEEE Trans. on Industrial Electronics. 2021;68(8):6412—6423.
9. Bermúdez M., Barrero F., Martín C., Perales M. Performance Analysis of Direct Torque Controllers in Five-phase Electrical Drives. Appl. Sci. 2021;11(24):11964.
10. Yepes A.G., Doval-Gandoy J. Overmodulation Method with Adaptive x-y Current Limitation for Five-phase Induction Motor Drives. IEEE Trans. Industrial Electronics. 2022;69(3):2240—2251.
11. Golubev A.N., Aleynikov A.V. Algoritm Upravleniya, Uluchshayushchiy Vibrosilovye Kharakteristiki Mnogofaznogo Magnitoelektricheskogo Elektroprivoda. Vestnik Ivanovskogo Gos. Energeticheskogo Un-ta. 2021;6:38—44. (in Russian).
12. Aleynikov A.V., Golubev A.N. Razrabotka Algoritma Upravleniya, Umen'shayushchego Vibratsii Mnogofaznogo Sinkhronnogo Elektrodvigatelya. Aktual'nye Problemy Elektroenergetiki: Sb. Nauch.-tekhn. Statey Konf. Nizhniy Novgorod, 2021:69—75. (in Russian).
13. Tomasov V.S., Usol'tsev A.A., Moravets M., Shchepankovskiy P., Stsheletskiy R. Nesimmetrichnye Rezhimy v Mnogofaznykh Dvigatelyakh i Privodakh. Elektrotekhnika. 2021;7:2—12. (in Russian).
14. Tereshkin V.M., Grishin D.A., Sergeev N.A., Tereshkin V.V. Moduli Rezul'tiruyushchikh Vektorov Napryazheniya Diskretnykh Sostoyaniy i Ikh Svyaz' s Velichinami Lineynykh Napryazheniy Semifaznoy Simmetrichnoy Obmotki. Vestnik MEI. 2022;3:111—119. (in Russian).
15. Tereshkin V.M., Grishin D.A., Tereshkin V.V. Apparatno-programmnyy Kompleks dlya Issledovaniya Prostranstvenno-vektornoy Modulyatsii Napryazheniya v Mnogofaznykh Dvigatelyakh. Sostoyanie i Perspektivy Razvitiya Elektro- i Teplotekhnologii (XXI Benardosovskie Chteniya): Materialy Mezhdunar. Nauch.-tekhn. Konf. Posvyashchennoy 140-letiyu Izobreteniya Elektrosvarki N.N. Benardosom. Ivanovo, 2021:63—68. (in Russian).
16. Mnogougol'nik Petri [Elektron. Resurs] https://ru.wikipedia.org/wiki/Mnogougol'nik_Petri (Data Obrashcheniya 15.02.23). (in Russian).
17. Tereshkin V.M., Grishin D.A., Sergeev N.A., Tereshkin V.V. Razvitie Metodov Fazovoy Manipulyatsii Vykhodnogo Napryazheniya Preobrazovatelya Primenitel'no k Semifaznomu Dvigatelyu. Vestnik MEI. 2022;6:21—29. (in Russian)
---
For citation: Tereshkin V.M., Rafikov A.M., Grishin D.A., Balandin S.P., Tereshkin V.V. Space-vector Modulation Algorithms and Base Vectors of a Seven-phase Motor Winding. Bulletin of MPEI. 2023;6:41—50. DOI: 10.24160/1993-6982-2023-6-41-50

Published

2023-09-05

Issue

Section

Electrical Complexes and Systems (2.4.2)