An Iterative-adaptive Mathematical Model of Electric Arc in Contact-arc Quenching Systems of Electromagnetic Contactors

Authors

  • Алексей [Aleksey] Юрьевич [Yu.] Верстунин [Verstunin]
  • Николай [Nikolay] Алексеевич [A.] Ведешенков [Vedeshchenkov]

DOI:

https://doi.org/10.24160/1993-6982-2024-2-27-38

Keywords:

electromechanical switching device, electromagnetic contactor, air electromagnetic contactor, arc quenching chamber, electric arc, contactor dynamic operation mode, mode of rare switching operations, mathematical model

Abstract

The aim of the work is to develop an iterative-adaptive mathematical model of electric arc formation between the separating contacts in air at atmospheric pressure in the contact-arc quenching systems of electromagnetic contactors. Matters concerned with mathematical model verification and development of an adaptive application based on a mathematical model to simplify the interaction of the end user–model link are addressed.

The subject considered was theoretically elaborated using the COMSOL Multiphysics cross-platform software based on a finite element analysis.

The adequacy of the results obtained from the mathematical model was assessed using the comparison method. When comparing the data, the voltage drop was estimated according to [17] along with the voltage drop data obtained by simulation.

As a result of the study, a mathematical model has been developed; the calculation adequacy has been estimated, and an adaptive application based on the mathematical model has been developed.

The obtained results are applied to low-voltage contactors with arc quenching in air at atmospheric pressure, which are within the coverage of GOST IEC 60947-1, GOST IEC 60947-4 and GOST IEC 61095.

The developed mathematical model features good convergence and makes it possible to describe the arc generation and life processes in the contact-arc quenching systems of electromagnetic contactors, with separating contacts in air at atmospheric pressure. This opens the possibility to use the model for an approximate numerical analysis of the switching capacity of the contact-arc quenching systems of contactors, to evaluate the effectiveness of the designed system as a whole and, if necessary, to make changes to the design in order to improve the arc quenching performance indicators.

The model enables its user to numerically analyze the dynamic switching process in the contact-arc-quenching circuit under the nominal operation conditions and under the conditions of rare switching operations.

The developed interactive adaptation application is an effective tool that helps the user to vary miscellaneous system parameters to meet the specific requirements of the prototype sample.

When taken together, the proposed solutions make it possible to reduce various kinds of costs in the development and finalization of contact-arc quenching contactor systems.

Author Biographies

Алексей [Aleksey] Юрьевич [Yu.] Верстунин [Verstunin]

Ph.D.-student of Electromechanics, Electrical and Electronic Apparatuses Dept., NRU MPEI, e-mail: verstuninalexsey@gmail.com

Николай [Nikolay] Алексеевич [A.] Ведешенков [Vedeshchenkov]

Ph.D. (Techn.), Assistant Professor of Electromechanics, Electrical and Electronic Apparatu-ses Dept., NRU MPEI, e-mail: vedeshenkov@yandex.ru

References

1. ГОСТ IEC 60947-4—2021. Аппаратура распределения и управления низковольтная. Часть 4-1. Контакторы и пускатели. Электромеханические контакторы и пускатели.
2. Cassie A.M. A New Theory are Rupture and Circuit Severity. CIGRE, 1939. Rep. 102.
3. Mayr O. Beiträge zur Theorie des Statschen und Des Dynamischen Lichtbogens // Arch. Elektrotechn. 1941. Bd. 7. No. 12. Pp. 588—608.
4. Hochrainer A. Eine Regelungstechnische Betrachtung des Elektrischen Lichtbogens // Kybernetische» Theorie des Lichtbogens. 1971. Bd. 92. Pp. 367—371.
5. Schwarz J. Berechnung von Schaltvorgängen mit Einer Zweifach Modifizicrten Mayr – Gleichung. 1972. Bd. 93. H. 7. Pp. 386—389.
6. Reider W., Urbaner J. New Aspects of Current Zero Research on Circuit — Breaker Reignition. A Theory of Thermal Non-equilibrium is Conditions. CIGRE, 1966. Rep. 107.
7. Sawicki A. Mathematical Models of the Electric Arc of Variable Geometrical Parameters Based on Static Voltage-current Characteristics // Proc. E3S Web of Conf. 2019. V. 84. P. 02012.
8. Воронин А.А., Кулаков П.А. Математическая модель электрической дуги // Вестник Самарского гос. техн. ун-та. Серия «Технические науки». 2012. № 4(36). С. 155—162.
9. Киреев К.В. Интегральная модель электрической дуги // Вестник Самарского гос. техн. ун-та. Серия «Технические науки». 2012. № 1(33). С. 134—141.
10. Верещагин Е.Н., Костюченко В.И. Модель электрической дуги в MATLAB / SIMULINK // Электротехника и электроэнергетика. 2013. № 2. С. 40—46.
11. Образцов Н.В., Фролов В.Я., Субботин Д.И. Моделирование дуги переменного тока в Comsol Multiphysics // Неделя науки СПбПУ: Материалы научной конференции с международным участием. СПб.: Издат.-полиграф. центр Политехн. ун-та., 2017. С. 131—134.
12. Ведешенков Н.А., Дергачев П.А., Кузнецова Е.А., Рыжов В.В. Моделирование низковольтной дуги постоянного тока // Электромеханика, электротехнические технологии, электротехнические материалы и компоненты: Материалы XVII Междунар. конф. М.: Знак, 2018. С. 262—263.
13. Курбатов П.А. Основы теории электрических аппаратов. М.: Лань, 2015. С. 334—349.
14. Квашнин А.О. Моделирование и разработка системы дугогашения низковольтного автоматического выключателя: дис. … канд. тех. наук. СПб.: Санкт-Петербургский ун-т Петра Великого, 2020.
15. Мышкин Н.К. и др. Электрические контакты. Долгопрудный: Издат. дом «Интеллект», 2008. С. 140—161.
16. Introduction to Application Builder in COMSOL [Электрон. ресурс] https://doc.comsol.com/5.4/doc/com.comsol.help.comsol/IntroductionToApplicationBuilder.pdf (дата обращения 30.08.2023).
17. Залесский А.М. Электрическая дуга отключения. М.: Госэнергоиздат, 1963. С. 13—16.
---
Для цитирования: Верстунин А.Ю., Ведешенков Н.А. Математическая итеративно-адаптационная модель электрической дуги в контактно-дугогасительных системах электромагнитных контакторов // Вестник МЭИ. 2024. № 2. С. 27—38. DOI: 10.24160/1993-6982-2024-2-27-38
#
1. GOST IEC 60947-4—2021. Apparatura Raspredeleniya i Upravleniya Nizkovol'tnaya. Chast' 4-1. Kontaktory i Puskateli. Elektromekhanicheskie Kontaktory i Puskateli. (in Russian).
2. Cassie A.M. A New Theory are Rupture and Circuit Severity. CIGRE, 1939. Rep. 102.
3. Mayr O. Beiträge zur Theorie des Statschen und Des Dynamischen Lichtbogens. Arch. Elektrotechn. 1941;7;12:588—608.
4. Hochrainer A. Eine Regelungstechnische Betrachtung des Elektrischen Lichtbogens. Kybernetische» Theorie des Lichtbogens. 1971;92:367—371.
5. Schwarz J. Berechnung von Schaltvorgängen mit Einer Zweifach Modifizicrten Mayr – Gleichung. 1972;93;7:386—389.
6. Reider W., Urbaner J. New Aspects of Current Zero Research on Circuit — Breaker Reignition. A Theory of Thermal Non-equilibrium is Conditions. CIGRE, 1966. Rep. 107.
7. Sawicki A. Mathematical Models of the Electric Arc of Variable Geometrical Parameters Based on Static Voltage-current Characteristics. Proc. E3S Web of Conf. 2019;84:02012.
8. Voronin A.A., Kulakov P.A. Matematicheskaya Model' Elektricheskoy Dugi. Vestnik Samarskogo Gos. Tekhn. Un-ta. Seriya «Tekhnicheskie Nauki». 2012;4(36):155—162. (in Russian).
9. Kireev K.V. Integral'naya Model' Elektricheskoy Dugi. Vestnik Samarskogo Gos. Tekhn. Un-ta. Seriya «Tekhnicheskie Nauki». 2012;1(33):134—141. (in Russian).
10. Vereshchagin E.N., Kostyuchenko V.I. Model' Elektricheskoy Dugi v MATLAB / SIMULINK. Elektrotekhnika i Elektroenergetika. 2013;2:40—46. (in Russian).
11. Obraztsov N.V., Frolov V.Ya., Subbotin D.I. Modelirovanie Dugi Peremennogo Toka v Comsol Multiphysics. Nedelya Nauki SPBPU: Materialy Nauchnoy Konferentsii s Mezhdunarodnym Uchastiem. SPb.: Izdat.-poligraf. Tsentr Politekhn. Un-ta., 2017:131—134. (in Russian).
12. Vedeshenkov N.A., Dergachev P.A., Kuznetsova E.A., Ryzhov V.V. Modelirovanie Nizkovol'tnoy Dugi Postoyannogo Toka. Elektromekhanika, Elektrotekhnicheskie Tekhnologii, Elektrotekhnicheskie Materialy i Komponenty: Materialy XVII Mezhdunar. Konf. M.: Znak, 2018:262—263. (in Russian).
13. Kurbatov P.A. Osnovy Teorii Elektricheskikh Apparatov. M.: Lan', 2015:334—349. (in Russian).
14. Kvashnin A.O. Modelirovanie i Razrabotka Sistemy Dugogasheniya Nizkovol'tnogo Avtomaticheskogo Vyklyuchatelya: Dis. … Kand. Tekh. Nauk. Spb.: Sankt-Peterburgskiy Un-t Petra Velikogo, 2020. (in Russian).
15. Myshkin N.K. i dr. Elektricheskie Kontakty. Dolgoprudnyy: Izdat. Dom «Intellekt», 2008:140—161. (in Russian).
16. Introduction to Application Builder in COMSOL [Elektron. Resurs] https://doc.comsol.com/5.4/doc/com.comsol.help.comsol/IntroductionToApplicationBuilder.pdf (Data Obrashcheniya 30.08.2023).
17. Zalesskiy A.M. Elektricheskaya Duga Otklyucheniya. M.: Gosenergoizdat, 1963:13—16. (in Russian)
---
For citation: Verstunin A.Yu., Vedeshenkov N.A. An Iterative-adaptive Mathematical Model of Electric Arc in Contact-arc Quenching Systems of Electromagnetic Contactors. Bulletin of MPEI. 2024;2:27—38. (in Russian). DOI: 10.24160/1993-6982-2024-2-27-38

Published

2023-12-21

Issue

Section

Electrical Complexes and Systems (2.4.2)