On the Synthesis of Induction Motor Based Traction Electric Drive Control Systems Implemented on a Controller with Limited Computing Resources
DOI:
https://doi.org/10.24160/1993-6982-2024-2-39-46Keywords:
traction electrical equipment set, induction machine, field-oriented vector control, optimization of electric drive operation, winding parameters estimationAbstract
Modern induction motor based traction electric drives often employ field-oriented vector control (FOVC) with orienting with respect to the rotor magnetic flux linkage vector.
In synthesizing the FOVC system structure, a number of tasks are solved aimed at improving the energy efficiency and the traction machine torque, frequency and current control quality. Such tasks include the estimation of signals that cannot be directly measured, estimation of the winding parameters, and optimization of the electrical machine operation mode with respect to a specified criterion.
Another important task is to secure uninterrupted and fault-tolerant operation of a closed-loop control system. For this purpose, the control system structure must contain units of limitations imposed on the controlled signals.
In some cases, the controller that performs control of the traction electric drive’s power frequency converter may have a limited computing capacities. Moreover, in frequent cases, one controller is configured to perform control of a few (two or more) drives. In view of this circumstance, the program code should be optimized as much as possible.
The program code optimization is closely linked with the need to simplify the electric drive control system structure. The number of its elements should be kept to a minimum; however, the control system must perform all functions assigned to it.
To solve the practical problems described above, preliminary procedures for estimating the parameters and for optimizing the induction motor operation are carried out. This entails the need to use certain equipment based on which the experimental bench is constructed.
The data obtained as a result of performing the parameter estimation and optimization procedures are subsequently used in the controller program code during the electric drive operation.
The aim of this work is to analyze the structural features of the highly efficient field-oriented vector control of the induction motor based traction electric drive taking into account limited computing resources of the controller.
References
2. Florentsev S., Izosimov D., Makarov L., Baida S., Belousov A. Complete Traction Electric Equipment Sets of Electro-mechanical Drive Trains for Tractors // Proc. IEEE Region VIII Intern. Conf. Computational Technol in Electrical and Electronics Eng. Irkutsk, 2010. Pp. 611—616.
3. Florentsev S.N., Polyukhovich V.S. Traction Electric Equipment Set for Industrial Shunting Locomotives // Proc. XVII Intern. Ural Conf. on AC Electric Drives. Ekaterinburg, 2018. Pp. 1—8.
4. Zhurov I., Bayda S., Florentsev S. Parameters Estimation Technique of the Induction Motor Electric Drive with the Field-oriented Control Tacking Into Account Core Losses // Proc. Intern. Ural Conf. Electrical Power Eng. Magnitogorsk, 2022. Pp. 164—169.
5. Zhurov I., Bayda S., Florentsev S. Modeling of a Diesel Locomotive Induction Motor Drive with the Field-oriented Control when Operating in a Limited Voltage and High Rotation Frequency Mode // Proc. XXVIII Intern. Workshop on Electric Drives: Improving Reliability of Electric Drives. Moscow, 2021. Pp. 1—5.
6. Zhurov I., Bayda S., Florentsev S. Field-oriented Control of the Induction Motor as Part of the Shunting Locomotive Powertrain Considering Core Losses and Magnetic Saturation // Proc. XXIX Intern. Workshop Electric Drives: Advances in Power Electronics for Electric Drives. Moscow, 2022. Pp. 1—6.
7. Журов И.О., Байда С.В., Флоренцев С.Н., Розкаряка П.И. Синтез оптимального управления тяговым электроприводом на базе асинхронного двигателя с учетом магнитного насыщения и потерь в стали // Электричество. 2023. № 3. С. 71—79.
8. Анучин А.С. Системы управления электроприводов. М.: Издат. дом МЭИ, 2015.
9. Шрейнер Р.Т. Математическое моделирование электроприводов переменного тока с полупроводниковыми преобразователями частоты. Екатеринбург: УРО РАН, 2000.
10. Фираго Б.И., Павлячик Л.Б. Регулируемые электроприводы переменного тока. Минск: Техноперспектива, 2006.
11. Schröder P. Elektrische Antriebe — Regelung von Antriebssystemen. Berlin: Springer, 2001.
12. Пересада С.М., Ковбаса С.Н., Приступа Д.Л. Алгоритм идентификации электрических параметров асинхронного двигателя на основе адаптивного наблюдателя полного порядка // Труды Института электродинамики Национальной академии наук Украины. 2013. № 34. С. 27—34.
13. Laowanitwattana J., Uatrongjit S. Induction Motor States and Parameters Estimation Using Extended Kalman Filter with Reduced Number of Measurements // Proc. XVIII Intern. Conf. Electrical Machines and Systems. Pattaya, 2015. Pp. 1631—1635.
14. Stinga F., Soimu A., Marian M. Online Estimation and Control of an Induction Motor // Proc. XIX Intern. Conf. System Theory, Control and Computing. 2015. Pp. 742—746.
15. Bhowmick D., Manna M., Chowdhury S.K. Online Estimation and Analysis of Equivalent Circuit Parameters of Three Phase Induction Motor Using Particle Swarm Optimization // Proc. IEEE VII Power India International Conf. 2016. Pp. 1—5.
16. Naganathan P., Srinivas S. Maximum Torque Per Ampere Based Direct Torque Control Scheme of IM Drive for Electrical Vehicle Applications // Proc. IEEE XVIII Intern. Power Electronics and Motion Control Conf. 2018. Pp. 256—261.
17. Peresada S., Kovbasa S., Dymko S., Bozhko S. Dynamic Output Feedback Linearizing Control of Saturated Induction Motors with Torque Per Ampere Ratio Maximization // Proc. II Intern. Conf. Intelligent Energy and Power Syst. 2016. Pp. 1—6.
18. Mousavi M.S., Davari S.A. A Novel Maximum Torque Per Ampere and Active Disturbance Rejection Control Considering Core Saturation for Induction Motor // Proc. IX Annual Power Electronics, Drives Systems and Technol. Conf. 2018. Pp. 318—323.
19. Kwon C. Performance of Adaptive MTPA Torque Per Amp Control at Multiple Operating Points for Induction Motor Drives // Proc. 44th Annual Conf. IEEE Industrial Electronics Soc. 2018. Pp. 637—641.
20. Popov A., Popova V., Gulyaev I., Briz F. Dynamic Response of FOC Induction Motors Using MTPA Considering Voltage Constraints // Proc. XXVI Intern. Workshop Electric Drives: Improvement in Efficiency of Electric Drives. 2019. Pp. 1—5.
21. Salahmanesh M.-A., Zarchi H.A., Hesar H.M. A Non-linear Technique for MTPA-based Induction Motor Drive Considering Iron Loss and Saturation Effects // Proc. XI Power Electronics, Drive Systems, and Technol. Conf. 2020. Pp. 1—6.
---
Для цитирования: Журов И.О., Розкаряка П.И., Байда С.В., Флоренцев С.Н. Особенности синтеза систем управления тяговыми электроприводами на базе асинхронной машины при ограниченных вычислительных ресурсах управляющего контроллера // Вестник МЭИ. 2024. № 2. С. 39—46. DOI: 10.24160/1993-6982-2024-2-39-46
#
1. Florentsev S.N. i dr. Komplekt Tyagovogo Elektrooborudovaniya dlya Asinkhronnogo Elektroprivoda Motovoza MPTG-2. Trudy XX Vseros. Konf. po Avtomatizirovannomu Elektroprivodu. Perm': Permskiy Natsion. Issled. Politekhn. Un-t, 2016:522—526. (in Russian).
2. Florentsev S., Izosimov D., Makarov L., Baida S., Belousov A. Complete Traction Electric Equipment Sets of Electro-mechanical Drive Trains for Tractors. Proc. IEEE Region VIII Intern. Conf. Computational Technol in Electrical and Electronics Eng. Irkutsk, 2010:611—616.
3. Florentsev S.N., Polyukhovich V.S. Traction Electric Equipment Set for Industrial Shunting Locomotives. Proc. XVII Intern. Ural Conf. on AC Electric Drives. Ekaterinburg, 2018:1—8.
4. Zhurov I., Bayda S., Florentsev S. Parameters Estimation Technique of the Induction Motor Electric Drive with the Field-oriented Control Tacking Into Account Core Losses. Proc. Intern. Ural Conf. Electrical Power Eng. Magnitogorsk, 2022:164—169.
5. Zhurov I., Bayda S., Florentsev S. Modeling of a Diesel Locomotive Induction Motor Drive with the Field-oriented Control when Operating in a Limited Voltage and High Rotation Frequency Mode. Proc. XXVIII Intern. Workshop on Electric Drives: Improving Reliability of Electric Drives. Moscow, 2021:1—5.
6. Zhurov I., Bayda S., Florentsev S. Field-oriented Control of the Induction Motor as Part of the Shunting Locomotive Powertrain Considering Core Losses and Magnetic Saturation. Proc. XXIX Intern. Workshop Electric Drives: Advances in Power Electronics for Electric Drives. Moscow, 2022:1—6.
7. Zhurov I.O., Bayda S.V., Florentsev S.N., Rozkaryaka P.I. Sintez Optimal'nogo Upravleniya Tyagovym Elektroprivodom na Baze Asinkhronnogo Dvigatelya s Uchetom Magnitnogo Nasyshcheniya i Poter' v Stali. Elektrichestvo. 2023;3:71—79. (in Russian).
8. Anuchin A.S. Sistemy Upravleniya Elektroprivodov. M.: Izdat. Dom MEI, 2015. (in Russian).
9. Shreyner R.T. Matematicheskoe Modelirovanie Elektroprivodov Peremennogo Toka s Poluprovodnikovymi Preobrazovatelyami Chastoty. Ekaterinburg: URO RAN, 2000. (in Russian).
10. Firago B.I., Pavlyachik L.B. Reguliruemye Elektroprivody Peremennogo Toka. Minsk: Tekhnoperspektiva, 2006. (in Russian).
11. Schröder P. Elektrische Antriebe — Regelung von Antriebssystemen. Berlin: Springer, 2001.
12. Peresada S.M., Kovbasa S.N., Pristupa D.L. Algoritm Identifikatsii Elektricheskikh Parametrov Asinkhronnogo Dvigatelya na Osnove Adaptivnogo Nablyudatelya Polnogo Poryadka. Trudy Instituta Elektrodinamiki Natsional'noy Akademii Nauk Ukrainy. 2013;34:27—34. (in Russian).
13. Laowanitwattana J., Uatrongjit S. Induction Motor States and Parameters Estimation Using Extended Kalman Filter with Reduced Number of Measurements. Proc. XVIII Intern. Conf. Electrical Machines and Systems. Pattaya, 2015:1631—1635.
14. Stinga F., Soimu A., Marian M. Online Estimation and Control of an Induction Motor. Proc. XIX Intern. Conf. System Theory, Control and Computing. 2015:742—746.
15. Bhowmick D., Manna M., Chowdhury S.K. Online Estimation and Analysis of Equivalent Circuit Parameters of Three Phase Induction Motor Using Particle Swarm Optimization. Proc. IEEE VII Power India International Conf. 2016:1—5.
16. Naganathan P., Srinivas S. Maximum Torque Per Ampere Based Direct Torque Control Scheme of IM Drive for Electrical Vehicle Applications. Proc. IEEE XVIII Intern. Power Electronics and Motion Control Conf. 2018:256—261.
17. Peresada S., Kovbasa S., Dymko S., Bozhko S. Dynamic Output Feedback Linearizing Control of Saturated Induction Motors with Torque Per Ampere Ratio Maximization. Proc. II Intern. Conf. Intelligent Energy and Power Syst. 2016:1—6.
18. Mousavi M.S., Davari S.A. A Novel Maximum Torque Per Ampere and Active Disturbance Rejection Control Considering Core Saturation for Induction Motor. Proc. IX Annual Power Electronics, Drives Systems and Technol. Conf. 2018:318—323.
19. Kwon C. Performance of Adaptive MTPA Torque Per Amp Control at Multiple Operating Points for Induction Motor Drives. Proc. 44th Annual Conf. IEEE Industrial Electronics Soc. 2018:637—641.
20. Popov A., Popova V., Gulyaev I., Briz F. Dynamic Response of FOC Induction Motors Using MTPA Considering Voltage Constraints. Proc. XXVI Intern. Workshop Electric Drives: Improvement in Efficiency of Electric Drives. 2019:1—5.
21. Salahmanesh M.-A., Zarchi H.A., Hesar H.M. A Non-linear Technique for MTPA-based Induction Motor Drive Considering Iron Loss and Saturation Effects. Proc. XI Power Electronics, Drive Systems, and Technol. Conf. 2020:1—6
---
For citation: Zhurov I.O., Rozkariaka P.I., Baida S.V., Florentsev S.N. On the Synthesis of Induction Motor Based Traction Electric Drive Control Systems Implemented on a Controller with Limited Computing Resources. Bulletin of MPEI. 2024;2:39—46. (in Russian). DOI: 10.24160/1993-6982-2024-2-39-46

