Derivation of the Formula for the Power Line Tower Fundamental Vibration Frequency
DOI:
https://doi.org/10.24160/1993-6982-2024-2-150-156Keywords:
power line support, number of panels, lower frequency estimate, Dunkerley method, spectral constantsAbstract
The vibration frequencies of a power line support planar regular model are investigated. The fundamental (lowest) frequency is found analytically using the Dunkerley method of partial frequencies. Vertical displacements of the nodes are neglected. The number of degrees of freedom of the structure model is equal to the number of nodes. The forces in the rods of a statically determinate structure are calculated using the method of cutting nodes in the Maple symbolic mathematics system. The equilibrium equations in projections on the coordinate axes are written in matrix form. To calculate the stiffness matrix coefficients, the Maxwell–Mohr formula is used under the assumption that all rods have the same stiffness. The truss elastic rods are connected by ideal hinges. The Dunkerley method makes it possible to reduce a problem with many degrees of freedom to the calculation of individual partial frequencies. The series of solutions performed for trusses of different orders of regularity is generalized for an arbitrary number of panels using the induction method. The linear homogeneous recurrent equations, to which the coefficients of the desired formula satisfy are solved using special Maple operators. The obtained analytical solution is compared with the numerical one. It is shown that the analytical solution accuracy increases monotonically with the number of panels and reaches a few percent. Spectral constants and isolines were found on the joint picture representing the spectra relating to a family of regular trusses of various orders. The derived formula for the fundamental frequency can be used in designing power line supports.
References
2. Цуканова Е.С. Расчет вынужденных колебаний стержневых систем методом конечных элементов с применением динамического конечного элемента // Транспортное машиностроение. 2015. Т. 46. № 2. С. 93—103.
3. Arndt M., Machado R.D., Scremin A. An Adaptive Generalized Finite Element Method Applied to Free Vibration Analysis of Straight Bars and Trusses // J. Sound and Vibration. 2010. V. 329(6). Pp. 659—672.
4. Щиголь Е.Д. Формула для нижней оценки собственных колебаний плоской регулярной балочной фермы с прямолинейным верхним поясом // Строительная механика и конструкции. 2023. № 2(37). С. 46—53.
5. Вычужина З.К. Расчет значения первой частоты собственных колебаний плоской фермы с грузом // Строительная механика и конструкции. 2023. № 3(38). С. 136—142.
6. Kirsanov M.N., Vorobyev O.V. The Analysis of Dependence of the Vibration Frequency of a Space Cantilever Truss on the Number of Panels // Вестник МГСУ. 2021. Т. 16. № 5. С. 570—576.
7. Sviridenko O., Komerzan E. The Dependence of the Natural Oscillation Frequency of the Console Truss on the Number of Panels // Construction of Unique Buildings and Structures. 2022. V. 101. P. 10101.
8. Petrenko V. The Natural Frequency of a Two-span Truss // AlfaBuild. 2021. V. 20. No. 2001. Pp. 1—7.
9. Петренко В.Ф. Оценка собственной частоты двухпролётной фермы с учетом жесткости опор // Строительная механика и конструкции. 2021. № 4(31). С. 16—25.
10. Vorobev O. Bilateral Analytical Estimation of First Frequency of a Plane Truss // Construction of Unique Buildings and Structures. 2020. V. 92. No. 9204. Pp. 1—12.
11. Hutchinson R.G., Fleck N.A. The Structural Performance of the Periodic Truss // J. Mechanics and Phys. Solids. 2006. V. 54(4). Pp. 756—782.
12. Hutchinson R.G., Fleck N.A. Microarchitectured Cellular Solids — the Hunt for Statically Determinate Periodic Trusses // ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik. 2005. V. 85(9). Pp. 607—617.
13. Комерзан Е.В., Маслов А.Н. Аналитическая оценка основной частоты собственных колебаний регулярной фермы // Строительная механика и конструкции. 2023. № 2(37). С. 17—26.
14. Комерзан Е.В., Маслов А.Н. Оценка основной частоты колебаний Г-образной пространственной фермы // Там же. С. 35—45.
15. Комерзан Е.В., Лушнов Н.А., Осипова Т.С. Аналитический расчет прогиба плоской шпренгельной фермы с произвольным числом панелей // Строительная механика и конструкции. 2022. № 2(33). С. 17—25.
16. Петриченко Е.А. Нижняя граница частоты собственных колебаний фермы Финка // Строительная механика и конструкции. 2020. № 3(26). С. 21—29.
17. Ткачук Г.Н. Формула зависимости прогиба несимметрично нагруженной плоской фермы с усиленными раскосами от числа панелей // Строительная механика и конструкции. 2019. № 2(21). С. 32—39.
18. Тиньков Д.В. Сравнительный анализ аналитических решений задачи о прогибе ферменных конструкций // Инженерно-строительный журнал. 2015. № 5(57). С. 66—73.
19. Yasui H. e. a. Analytical Study on Wind-Induced Vibration of Power Transmission Towers // J. Wind Engineering and Industrial Aerodynamics. 1998. V. 76. Pp. 3—14.
20. Liew K. M., Wang C. M. Vibration Studies on Skew Plates: Treatment of Internal Line Supports // Computers & Structures. 1993. V. 49(6). Pp. 941—951.
---
Для цитирования: Кирсанов М.Н. Вывод формулы для основной частоты колебаний опоры линии электропередач // Вестник МЭИ. 2024. № 2. С. 150—156. DOI: 10.24160/1993-6982-2024-2-150-156
---
Работа выполнена при поддержке: Российского научного фонда (проект № 22-21-00473), https://rscf.ru/project/22-21-00473/
#
1. Kovalenko G.V., Makeev V.B., Dement'eva V.V. Issledovanie Chastot Sobstvennykh Kolebaniy Ferm na Osnove Metoda Konechnykh Elementov (MKE). Molodaya Mysl': Nauka, Tekhnologii, Innovatsii: Sb. Trudov VII Vseros. Nauch.-tekhn. Konf. Studentov, Magistrantov, Aspirantov i Molodykh Uchenykh. Bratsk: Bratskiy Gos. Un-t, 2015:44—48. (in Russian).
2. Tsukanova E.S. Raschet Vynuzhdennykh Kolebaniy Sterzhnevykh Sistem Metodom Konechnykh Elementov s Primeneniem Dinamicheskogo Konechnogo Elementa. Transportnoe Mashinostroenie. 2015;46;2:93—103. (in Russian).
3. Arndt M., Machado R.D., Scremin A. An Adaptive Generalized Finite Element Method Applied to Free Vibration Analysis of Straight Bars and Trusses. J. Sound and Vibration. 2010;329(6):659—672.
4. Shchigol' E.D. Formula dlya Nizhney Otsenki Sobstvennykh Kolebaniy Ploskoy Regulyarnoy Balochnoy Fermy s Pryamolineynym Verkhnim Poyasom. Stroitel'naya Mekhanika i Konstruktsii. 2023;2(37):46—53. (in Russian).
5. Vychuzhina Z.K. Raschet Znacheniya Pervoy Chastoty Sobstvennykh Kolebaniy Ploskoy Fermy s Gruzom. Stroitel'naya Mekhanika i Konstruktsii. 2023;3(38):136—142. (in Russian).
6. Kirsanov M.N., Vorobyev O.V. The Analysis of Dependence of the Vibration Frequency of a Space Cantilever Truss on the Number of Panels. Vestnik MGSU. 2021;16;5:570—576.
7. Sviridenko O., Komerzan E. The Dependence of the Natural Oscillation Frequency of the Console Truss on the Number of Panels. Construction of Unique Buildings and Structures. 2022;101:10101.
8. Petrenko V. The Natural Frequency of a Two-span Truss. AlfaBuild. 2021;20;2001:1—7.
9. Petrenko V.F. Otsenka Sobstvennoy Chastoty Dvukhproletnoy Fermy s Uchetom Zhestkosti Opor. Stroitel'naya Mekhanika i Konstruktsii. 2021;4(31):16—25. (in Russian).
10. Vorobev O. Bilateral Analytical Estimation of First Frequency of a Plane Truss. Construction of Unique Buildings and Structures. 2020;92;9204:1—12.
11. Hutchinson R.G., Fleck N.A. The Structural Performance of the Periodic Truss. J. Mechanics and Phys. Solids. 2006;54(4):756—782.
12. Hutchinson R.G., Fleck N.A. Microarchitectured Cellular Solids — the Hunt for Statically Determinate Periodic Trusses. ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik. 2005;85(9):607—617.
13. Komerzan E.V., Maslov A.N. Analiticheskaya Otsenka Osnovnoy Chastoty Sobstvennykh Kolebaniy Regulyarnoy Fermy. Stroitel'naya Mekhanika i Konstruktsii. 2023;2(37):17—26. (in Russian).
14. Komerzan E.V., Maslov A.N. Otsenka Osnovnoy Chastoty Kolebaniy G-obraznoy Prostranstvennoy Fermy. Tam Zhe:35—45. (in Russian).
15. Komerzan E.V., Lushnov N.A., Osipova T.S. Analiticheskiy Raschet Progiba Ploskoy Shprengel'noy Fermy s Proizvol'nym Chislom Paneley. Stroitel'naya Mekhanika i Konstruktsii. 2022;2(33):17—25. (in Russian).
16. Petrichenko E.A. Nizhnyaya Granitsa Chastoty Sobstvennykh Kolebaniy Fermy Finka. Stroitel'naya Mekhanika i Konstruktsii. 2020;3(26):21—29. (in Russian).
17. Tkachuk G.N. Formula Zavisimosti Progiba Nesimmetrichno Nagruzhennoy Ploskoy Fermy s Usilennymi Raskosami ot Chisla Paneley. Stroitel'naya Mekhanika i Konstruktsii. 2019;2(21):32—39. (in Russian).
18. Tin'kov D.V. Sravnitel'nyy Analiz Analiticheskikh Resheniy Zadachi o Progibe Fermennykh Konstruktsiy. Inzhenerno-stroitel'nyy Zhurnal. 2015;5(57):66—73. (in Russian).
19. Yasui H. e. a. Analytical Study on Wind-Induced Vibration of Power Transmission Towers. J. Wind Engineering and Industrial Aerodynamics. 1998;76:3—14.
20. Liew K. M., Wang C. M. Vibration Studies on Skew Plates: Treatment of Internal Line Supports. Computers & Structures. 1993;49(6):941—951
---
For citation: Kirsanov M.N. Derivation of the Formula for the Power Line Tower Fundamental Vibration Frequency. Bulletin of MPEI. 2024;2:150—156. (in Russian). DOI: 10.24160/1993-6982-2024-2-150-156
---
The work is executed at support: Russian Science Foundation (Project No. 22-21-00473), https://rscf.ru/project/22-21-00473/

