The effect the power supply frequency and the dielectric barrier material have on the radiation spectrum from surface discharge plasma

Authors

  • Александр [Alexander] Вадимович [V.] Лазукин [Lazukin]
  • Дмитрий [Dmitriy] Игоревич [I.] Кавыршин [Kavyrshin]
  • Сергей [Sergey] Анатольевич [A.] Кривов [Krivov]
  • Сергей [Sergey] Дмитриевич [D.] Федорович [Fedorovich]

Keywords:

surface discharge, irradiance, UV band, dielectric barrier, power supply frequency, оptical emission spectrum

Abstract

The results from experimental studies of irradiance in the UV range and the spectral composition of radiation from the surface discharge plasma as a function of the dielectric barrier material and power supply frequency are presented. The experiments were carried out using axially symmetrical electrode systems containing a disk-shaped electrode by applying a sine-wave power supply voltage with a frequency from 0.6 to 35 kHz. Alumina ceramics of different composition, ceramics from pure aluminum nitride, ultrahigh molecular weight polyethylene, and synthetic ruby were used as the barrier material. The thickness of all barriers used in the study was equal to 1 mm. It is shown that the interaction of discharge plasma with the dielectric barrier material can change the discharge's optical spectrum. For example, the occurrence of a continuous spectrum for aluminum nitride and separate spectral lines in case of adding a small quantity of chromium oxide in the composition of alumina ceramics were observed. The presence of a continuous spectrum of discharge plasma radiation over the aluminum nitride surface facilitates the growth of the UV-A radiation component. The most intense radiation among the considered barrier material versions was observed in the UV-A band. The irradiance formed by surface discharge plasma is three orders of magnitude lower than the values used as doses in subjecting seeds to preplant stimulation. With the exposure time equal to 5 min, the discharge plasma produces the radiation dose equal to 45 J/m2 necessary to stimulate seeds (the stimulating dose is in the range from 4 to 60 kJ/m2). On the other hand, the plasma radiation cannot provoke even the minimal damage to the DNA of the irradiated object. The radiation dose in the UV-C band with a 15-min exposure does not exceed the minimum DNA damage inducing dose, namely, the formation of thymine dimer in recalculation for a 254 nm wavelength. By using the discharge energy versus the power supply frequency curve, it is possible to determine the range of frequencies at which the transition to a more high-energy form of discharge takes place. This transition is associated with an increase of the UV-C component in the radiation.

Author Biographies

Александр [Alexander] Вадимович [V.] Лазукин [Lazukin]

Workplace High Voltage Engineering and Electrical Physics Dept., NRU MPEI; SSC RF JSC «NGO «CNIITMASH»
Occupation Researcher

Дмитрий [Dmitriy] Игоревич [I.] Кавыршин [Kavyrshin]

Workplace Joint Institute for High Temperatures of the Russian Academy of Sciences
Occupation junior researcher

Сергей [Sergey] Анатольевич [A.] Кривов [Krivov]

Science degree: Dr.Sci. (Techn.)
Workplace High Voltage Engineering and Electrical Physics Dept., NRU MPEI
Occupation professor

Сергей [Sergey] Дмитриевич [D.] Федорович [Fedorovich]

Science degree: Ph.D. (Techn.)
Workplace General Physics and Nuclear Fusion dept., NRU MPEI
Occupation Assistant Professor

References

1. Dobrin D., Magureanu M., Mandache N., Ionita M.D. The effect of non-thermal plasma treatment on wheat germination and early growth // Innovative Food Sci. and Emerging Tech. 2015. V. 29 P. 255—260.
2. Schlüter O. е. а. Opinion on the use of plasma processes for treatment of foods // Mol. Nutr. Food Res. 2013. V. 57. P. 920927.
3. Pekárek S. Experimental study of surface dielectric barrier discharge in air and its ozone production // J. Phys. D: Appl. Phys. 2012. V. 45. Р. 075201.
4. Jolibois J., Takashima K., Mizuno A. Application of a non-thermal surface plasma discharge in wet condition for gas exhaust treatment: NOx. removal // J. Electrostatics. 2012. V. 70. P. 300—308.
5. Moreau E. Airflow control by non-thermal plasma actuators // J. Phys. D: Appl. Phys. 2007. V. 40 P. 605—636.
6. Курочкина О.А. Предпосевная обработка семян яровой пшеницы ультрафиолетовыми лучами: дис... канд. с-х наук. Курган, 2009.
7. Fernández A., Thompson A. The inactivation of Salmonella by cold atmospheric plasma treatment // Food Research Intern. 2012. V. 45. P. 678—684.
8. Boudam M. K. е. а. Bacterial spore inactivation by atmospheric-pressure plasmas in the presence or absence of UV photons as obtained with the same gas mixture // J. Phys. D: Appl. Phys. 2006. V. 39. P. 3494—3507.
9. Мошкунов С.И. и др. Электродинамический эффект, получаемый при высокочастотном барьерном разряде в газе // Прикладная физика. 2011. Вып. 6. С. 32—38.
10. Лазукин А.В., Кривов С.А. О возможностях применения поверхностного разряда для осаждения аэрозоля // Радиоэлектроника, электротехника и энергетика: Тез. докл. 18 Междунар. науч.-техн. конф. М.: Издательский дом МЭИ, 2012. Т. 4. С. 461—462.
11. Biganzoli I. е. а. Optical and electrical charac-terization of a surface dielectric barrier discharge plasma actuator //Plasma Sources Sci. Technol. 2013. V. 22. Р. 025009.
12. Kitazaki S., Koga K., Shiratani M., Hayashi N. Effects of Atmospheric Pressure Dielectric Barrier Discharge Plasma Irradiation on Yeast Growth // Res. Soc.Symp. Proc. 2012. Р. 1469.
13. Андреев В.В., Васильева Л.А. Исследование поверхностного барьерного разряда, создаваемого электродами в виде ряда параллельных полос // Прикладная физика. 2012. Вып. 6. С. 116—123.
14. ГОСТ Р 8.759— 2011. ГСИ. Измерение энергетической освещенности и энергетической экспозиции ультрафиолетового излучения в фотобиологии. Методика измерений.
15. Manley T. The Electric Characteristics of the Ozonator Discharge // Trans. Еlectrochem. Soc. 1943. V. 84. P. 83—96.
16.Thomas F. O., Corke T., Iqbal M., Kozlov A., Schatzman D. Optimization of Dielectric Barrier Discharge Plasma Actuators for Active Aerodynamic Flow Control // J. AIAA. 2009. V. 47. P. 2169—2178.
17. Научно-техническое предприятие «ТКА» [Офиц сайт]. http://www.tkaspb.ru/main/index.php?productID=27 (дата обращения 11.09.16).
18. Юлдашев Р.З. Повышение посевных качеств семян хлопчатника в республике Таджикастан методами предпосевного ультрафиолетового и низкотемпературного плазменного облучения: автореф. дис... канд. техн. наук. СПб., 2013.
19. Антонов В.В., Ишанин Г.Г. Коррекция спектральной чувствительности УФ-радиометра спектрофотометрическим методом // Научно-технический вестник Санкт-Петербургского государственного университета информационных технологий, механики и оптики. 2011. № 3 (73). С. 9—14.
20. Конев С.В., Волотовский И.Д. Фотобиология. Минск: Изд-во БГУ им. В.И. Ленина, 1979.

Published

2018-12-21

Issue

Section

Power engineering (05.14.00)