The Effect of Gas Distribution in a Straight-Flow Vortex Burner on the Combustion Process in a Limited Furnace Volume
DOI:
https://doi.org/10.24160/1993-6982-2024-3-56-65Keywords:
boiler, furnace, straight-flow vortex burner, numerical modeling, industrial tests, heating surface reliability, nitrogen oxidesAbstract
The aim of the study is to optimize the gaseous fuel combustion conditions in a furnace with a volume limited in the flue gas exit direction and equipped with straight-flow vortex burners. The effect the design and operating factors have on the environmental performance (nitrogen oxide emissions) and reliable operation of heating surface tubes directly exposed to the burner flame is investigated.
The results of numerical modeling carried out using the ANSYS software package (ANSYS CFX computer program) and field tests at an industrial facility are given. To avoid excessive computation mesh density, the heating surface limiting the flame jet free propagation area was modeled by a filter, the use of which in CFD-modelling programs makes it possible to produce the required aerodynamic pressure drop and heat transfer. It has been found that in modeling the furnace space, the filter makes an effect similar to that of a heating surface and produces an adequate feedback in the medium flow, which determines its use in further calculations.
Numerical experiments were carried, which have shown that the areas of the highest temperatures are in the central root zone and at the flame end as a result of fuel afterburning. Increasing the gas supply through the nozzles of the annular peripheral channels causes the fuel combustion process to take a longer time to proceed and shifts the flame high-temperature region to the furnace chamber end. This results in a reduced generation of nitrogen oxides, but in a higher temperature impact on the heating surface tubes. Increasing the gas flow rate to the central part causes the flame to become shorter, shifts the high-temperature zone to the flame root, accelerates the combustion process, and unambiguously leads to an increase in NOx concentrations. It has been found that gas redistribution between the outer and inner rings of the burner peripheral channel does not yield a visible effect.
In the course of field tests, it has been quantitatively assessed how the combustion process (flame shape) influences the nitrogen oxide emissions and the temperature of the heating surfaces located at the furnace outlet and directly exposed to the flame.
It is recommended to operate the boiler in the nominal mode with the minimum possible gas flow rate through the burner central header, which will provide the most favorable conditions both in terms of its reliability and environmental indicators.
References
2. Introduction to ANSYS Meshing 14.5. Ansys Costumer Portal [Электрон. ресурс] https://support.ansys.com/AnsysCustomerPortal/en_us/Knowledge%20Resources/Tutorials%20&%20Training%20Materials/Training%20Files/Introduction+to+ANSYS+Meshing+14.5 (дата обращения 01.10.2023).
3. Хохлов Д.А., Зайченко М.Н., Верещетин В.А., Тугов А.Н. Влияние сопротивления поверхности нагрева на развитие газового факела // Енисейская Теплофизика: Тез. докл. I Всерос. науч. конф. с междунар. участием. Красноярск: Изд-во СФУ, 2023. С. 474—475.
4. Патанкар С. Численные методы решения задач теплообмена и динамики жидкости. М.: Энергоатомиздат, 1984.
5. Launder B.E., Spalding D.B. The Numerical Computation of Turbulent Flow // Computer Methods in Appl. Mech. and Eng. 1974. V. 3. Pp. 269—289.
6. Carvalho M.G., Farias T., Fontes P. Predicting Radiative Heat Transfer in Absorbing, Emitting, and Scattering Media Using the Discrete Transfer Method // ASME HTD. Fundamentals of Radiation Heat Transfer. 1991. V. 160. Pр. 17—26.
7. Chui E.H., Raithby G.D. Computation of Radiant Heat Transfer on a Non-orthogonal Mesh Using the Finite-volume Method // Numerical Heat Transfer. 1993. V. 3(23). Pр. 269—288.
8. Raithby G.D., Chui Е.Н. A Finite-volume Method for Predicting a Radiant Heat Transfer in Enclosures with Participating Media // J. Heat Transfer. 1990. V. 112. Pр. 415—423.
9. Magnussen B.F., Hjertager B.H. On Mathematical Models of Turbulent Combustion with Special Emphasis on Soot Formation and Combustion // Proc. XVI Intern. Symp. Combustion. 1977. V. 16(1). Pp. 719—729.
10. Верещетин В.А., Тугов А.Н., Хохлов Д.А., Зайченко М.Н. Анализ влияния распределения топлива в прямоточно-вихревой горелке на конфигурацию факела и экологические показатели горения // Енисейская Теплофизика: Тез. докл. I Всерос. науч. конф. с междунар. участием. Красноярск: Изд-во СФУ, 2023. С. 461—462.
11. Григорьев Д.Р., Гамбург М., Котлер В.Р. Современная система сжигания, обеспечивающая требования Гётеборгского протокола только за счет горелочных устройств Zeeco Free Jet // Промышленная энергетика. 2021. № 1. С. 56—63.
12. Зройчиков Н.А., Григорьев Д.Р., Gamburgс M., Пай А.В. Внедрение на энергетическом котле горелочных устройств с внутритопочной рециркуляцией дымовых газов // Теплоэнергетика. 2021. № 11. С. 71—79.
---
Для цитирования: Тугов А.Н., Верещетин В.А., Хохлов Д.А., Зайченко М.Н. Влияние распределения газа в прямоточно-вихревой горелке на процесс горения в ограниченном объеме топки // Вестник МЭИ. 2024. № 3. С. 56—65. DOI: 10.24160/1993-6982-2024-3-56-65
---
Конфликт интересов: авторы заявляют об отсутствии конфликта интересов
#
1. Cavalcante-Neto J.B. Survey Meshing Lection RPCMOD08 lia.ufc.br: Laboratórios de Pesquisa em Ciência da Computação Departamento de Computação — UFC [Elektron. Resurs] http://www.lia.ufc.br/~joaquimb/lects/Survey%20Meshing%20Joaquim%20RPCMOD_Abr2008.pps (Data Obrashcheniya 01.10.2023).
2. Introduction to ANSYS Meshing 14.5. Ansys Costumer Portal [Elektron. Resurs] https://support.ansys.com/AnsysCustomerPortal/en_us/Knowledge%20Resources/Tutorials%20&%20Training%20Materials/Training%20Files/Introduction+to+ANSYS+Meshing+14.5 (Data Obrashcheniya 01.10.2023).
3. Khokhlov D.A., Zaychenko M.N., Vereshchetin V.A., Tugov A.N. Vliyanie Soprotivleniya Poverkhnosti Nagreva na Razvitie Gazovogo Fakela. Eniseyskaya Teplofizika: Tez. Dokl. I Vseros. Nauch. Konf. s Mezhdunar. Uchastiem. Krasnoyarsk: Izd-vo SFU, 2023:474—475. (in Russian).
4. Patankar S. Chislennye Metody Resheniya Zadach Teploobmena i Dinamiki Zhidkosti. M.: Energoatomizdat, 1984. (in Russian).
5. Launder B.E., Spalding D.B. The Numerical Computation of Turbulent Flow. Computer Methods in Appl. Mech. and Eng. 1974;3:269—289.
6. Carvalho M.G., Farias T., Fontes P. Predicting Radiative Heat Transfer in Absorbing, Emitting, and Scattering Media Using the Discrete Transfer Method. ASME HTD. Fundamentals of Radiation Heat Transfer. 1991;160:17—26.
7. Chui E.H., Raithby G.D. Computation of Radiant Heat Transfer on a Non-orthogonal Mesh Using the Finite-volume Method. Numerical Heat Transfer. 1993;3(23):269—288.
8. Raithby G.D., Chui E.N. A Finite-volume Method for Predicting a Radiant Heat Transfer in Enclosures with Participating Media. J. Heat Transfer. 1990;112:415—423.
9. Magnussen B.F., Hjertager B.H. On Mathematical Models of Turbulent Combustion with Special Emphasis on Soot Formation and Combustion. Proc. XVI Intern. Symp. Combustion. 1977;16(1):719—729.
10. Vereshchetin V.A., Tugov A.N., Khokhlov D.A., Zaychenko M.N. Analiz Vliyaniya Raspredeleniya Topliva v Pryamotochno-vikhrevoy Gorelke na Konfiguratsiyu Fakela i Ekologicheskie Pokazateli Goreniya. Eniseyskaya Teplofizika: Tez. Dokl. I Vseros. Nauch. Konf. s Mezhdunar. Uchastiem. Krasnoyarsk: Izd-vo SFU, 2023:461—462. (in Russian).
11. Grigor'ev D.R., Gamburg M., Kotler V.R. Sovremennaya Sistema Szhiganiya, Obespechivayushchaya Trebovaniya Geteborgskogo Protokola Tol'ko za Schet Gorelochnykh Ustroystv Zeeco Free Jet. Promyshlennaya Energetika. 2021;1:56—63. (in Russian).
12. Zroychikov N.A., Grigor'ev D.R., Gamburgs M., Pay A.V. Vnedrenie na Energeticheskom Kotle Gorelochnykh Ustroystv s Vnutritopochnoy Retsirkulyatsiey Dymovykh Gazov. Teploenergetika. 2021;11:71—79. (in Russian)
---
For citation: Tugov A.N., Vereshchetin V.A., Khokhlov D.A., Zaichenko M.N. The Effect of Gas Distribution in a Straight-Flow Vortex Burner on the Combustion Process in a Limited Furnace Volume. Bulletin of MPEI. 2024;3:56—65. (in Russian). DOI: 10.24160/1993-6982-2024-3-56-65
---
Conflict of interests: the authors declare no conflict of interest

