Convective Cooling of Blades in a Turbine Driven by Supercritical Carbon Dioxide

Authors

  • Алексей [Aleksey] Олегович [O.] Смирнов [Smirnov]
  • Кирилл [Kirill] Александрович [A.] Бердюгин [Berdyugin]
  • Владимир [Vladimir] Романович [R.] Осипов [Osipov]
  • Виктор [Viktor] Александрович [A.] Тищенко [Tishchenko]

DOI:

https://doi.org/10.24160/1993-6982-2024-3-78-88

Keywords:

blade cooling, supercritical carbon dioxide, oxy-fuel combustion cycle, СО2 turbine, heat transfer coefficient, Allam cycle

Abstract

Currently, active efforts are taken at power industry facilities to control the greenhouse gas, namely, carbon dioxide emissions. One of the solutions to reduce CO2 emissions at power industry facilities is to develop of oxygen-fuel energy complexes that feature almost zero greenhouse gas emissions. The most promising and effective oxygen-fuel energy complex is the one based on the Allam cycle. The article considers a study of the possibility and efficiency of using supercritical carbon dioxide as a coolant for a carbon dioxide turbine based on the Allam cycle. To do this, 1D calculation methods and numerical modeling techniques are used. Verification of the gas-dynamic computation against the experimental data is carried out. The heat transfer coefficients of supercritical CO2 are obtained under different flow conditions in the elements of the turbine flow paths. A 1D method for preliminary calculation of the coolant flow rate for a blade operating in a carbon dioxide turbine is formulated. The presented approach makes it possible to consider the thermophysical properties of supercritical carbon dioxide

Author Biographies

Алексей [Aleksey] Олегович [O.] Смирнов [Smirnov]

Design Engineer of the 3rd Category of JSC «Power Machines», Ph.D.-student of Steam and Gas Turbines Dept., NRU MPEI, e-mail: alex271096@me.com

Кирилл [Kirill] Александрович [A.] Бердюгин [Berdyugin]

Design Engineer of the 3rd Category of JSC «Power Machines», Ph.D.-student, Junior Research Assistant of Steam and Gas Turbines Dept., NRU MPEI, e-mail: berdyuginka@gmail.com

Владимир [Vladimir] Романович [R.] Осипов [Osipov]

Design Engineer of the 2nd Category of JSC «Power Machines», Ph.D.-student of Innovative Technologies for High-tech Industries Dept, NRU MPEI, e-mail: Osipov_VR@power-m.ru

Виктор [Viktor] Александрович [A.] Тищенко [Tishchenko]

Ph.D. (Techn.),  Chief Designer — Head of the New Turbomachines Dept., JSC «Power Machines», Assistant Professor of Steam and Gas Turbines Dept., NRU MPEI, e-mail: Tischenko_VA@nordenergogroup.com

References

1. Leonard M.D., Michaelides E.E., Michaelides D.N. Energy Storage Needs for the Substitution of Fossil Fuel Power Plants with Renewables // Renewable Energy. 2020. V. 145. Pp. 951—962.
2. Perera F., Nadeau K. Climate Change, Fossil-fuel Pollution, and Children’s Health // New England J. Medicine. 2022. V. 386(24). Pp. 2303—2314.
3. Bariss U., Laicane I., Blumberga D. Analysis of Factors Influencing Energy Efficiency in a Smart Metering Pilot. Energetika. 2014. V. 60(2). Pp. 125—135.
4. Energy I. World Energy Outlook 2014. Paris: IEA Publ., 2014.
5. Pavithran A., Sharma M., Shukla A.K. Oxy-fuel Combustion Power Cycles: a Sustainable Way to Reduce Carbon Dioxide Emission // Distributed Generation & Alternative Energy J. 2021. V. 36(4). Pp. 335—362.
6. Brun K., Friedman P., Dennis R. Fundamentals and Applications of Supercritical Carbon Dioxide (sCO2) Based Power Cycles. Woodhead Publ., 2017.
7. Rogalev A. e. a. Research and Development of the Oxy-fuel Combustion Power Cycles with CO2 Recirculation // Energies. 2021. V. 14(10). P. 2927.
8. Allam R.J. e. a. The Oxy-fuel, Supercritical CO2 Allam Cycle: New Cycle Developments To Produce Even Lower-Cost Electricity from Fossil Fuels Without Atmospheric Emissions // Proc. Turbo Expo: Power for Land, Sea, and Air. N.-Y.: American Soc. Mechanical Engineers, 2014. V. 45660. P. V03BT36A016.
9. Akshat R. Первая в мире электростанция на ископаемом топливе с нулевым уровнем выбросов // Газотурбинные технологии. 2018. №. 2. С. 14—17.
10. Alsarhan L.M. e. a. Circular Carbon Economy (CCE): a Way to Invest CO2 and Protect the Environment, a Review // Sustainability. 2021. V. 13(21). P. 11625.
11. Martin S. e. a. Progress Update on the Allam Cycle: Commercialization of Net Power and the Net Power Demonstration Facility // Proc. XIV Greenhouse Gas Control Technol. Conf. Melbourne, 2018. Pp. 21—26.
12. Allam R. e. a. Demonstration of the Allam Cycle: an Update on the Development Status of a High Efficiency Supercritical Carbon Dioxide Power Process Employing Full Carbon Capture // Energy Proc. 2017. V. 114. Pp. 5948—5966.
13. Han J. C., Dutta S., Ekkad S. Gas Turbine Heat Transfer and Cooling Technology. Boca Raton: CRC Press, 2012.
14. Fomin Y.D. e. a. Thermodynamic Properties of Supercritical Carbon Dioxide: Widom and Frenkel Lines // Phys. Rev. E. 2015. V. 91(2). P. 022111.
15. Sciubba E. Air-cooled Gas Turbine Cycles. Part 1: an Analytical Method for the Preliminary Assessment Of Blade Cooling Flow Rates // Energy. 2015. V. 83. Pp. 104—114.
16. Albeirutty M.H., Alghamdi A.S., Najjar Y.S. Heat Transfer Analysis for a Multistage Gas Turbine Using Different Blade-cooling Schemes // Appl. Thermal Eng. 2004. V. 24(4). Pp. 563—577.
17. Torbidoni L., Horlock J. H. A New Method to Calculate the Coolant Requirements of a High-temperature Gas Turbine Blade // J. Turbomach. 2005. V. 127(1). Pp. 191—199.
18. Wahl A. e. a. Heat Transfer Correlation for sCO2 Cooling in a 2 mm Tube // J. Supercritical Fluids. 2021. V. 173. P. 105221.
19. Sullivan N. On the Local Heat Transfer Behavior or Supercritical Carbon Dioxide [Электрон. ресурс] https://commons.erau.edu/edt/618/ (дата обращения 08.08.2023).
20. Dang C., Hihara E. In-tube Cooling Heat Transfer of Supercritical Carbon Dioxide Part 1. Experimental Measurement // Intern. J. Refrigeration. 2004. V. 27(7). Pp. 736—747.
21. Králik J. CFD Simulation of Air Flow Over an Object with Gable Roof, Revised with Y+ Approach // Trans. VSB. Civil Eng. Series. 2016. V. 16(2). Pp. 85—94
22. Ying Q. e. a. Vortex Patterns Investigation and Enstrophy Analysis in a Small Scale S-CO2 Axial Turbine // Energies. 2021. V. 14(19). P. 6112.
23. Huber M.L. e. a. The NIST REFPROP Database for Highly Accurate Properties of Industrially Important Fluids // Industrial & Eng. Chem. Research. 2022. V. 61(42). Pp. 15449—15472.
24. Terrell E.J., Mouzon B.D., Bogard D.G. Convective Heat Transfer Through Film Cooling Holes of a Gas Turbine Blade Leading Edge // Proc. Turbo Expo: Power for Land, Sea and Air. 2005. V. 47268. Pp. 833—844.
25. Дейч М.Е., Филиппов Г.А., Лазарев Л.Я. Атлас профилей решеток осевых турбомашин. М.: Машиностроение, 1965.
26. Li B. e. a. Design of Thermal Barrier Coatings Thickness for Gas Turbine Blade Based on Finite Element Analysis // Mathematical Problems in Eng. 2017. V. 2017. Pp. 1—14.
---
Для цитирования: Смирнов А.О., Бердюгин К.А., Осипов В.Р., Тищенко В.А. Конвективное охлаждение лопаточных аппаратов в турбине, работающей на сверхкритическом диоксиде углерода // Вестник МЭИ. 2024. № 3. С. 78—88. DOI: 10.24160/1993-6982-2024-3-78-88
---
Конфликт интересов: авторы заявляют об отсутствии конфликта интересов
#
1. Leonard M.D., Michaelides E.E., Michaelides D.N. Energy Storage Needs for the Substitution of Fossil Fuel Power Plants with Renewables. Renewable Energy. 2020;145:951—962.
2. Perera F., Nadeau K. Climate Change, Fossil-fuel Pollution, and Children’s Health. New England J. Medicine. 2022;386(24):2303—2314.
3. Bariss U., Laicane I., Blumberga D. Analysis of Factors Influencing Energy Efficiency in a Smart Metering Pilot. Energetika. 2014;60(2):125—135.
4. Energy I. World Energy Outlook 2014. Paris: IEA Publ., 2014.
5. Pavithran A., Sharma M., Shukla A. K. Oxy-fuel Combustion Power Cycles: a Sustainable Way to Reduce Carbon Dioxide Emission. Distributed Generation & Alternative Energy J. 2021;36(4):335—362.
6. Brun K., Friedman P., Dennis R. Fundamentals and Applications of Supercritical Carbon Dioxide (sCO2) Based Power Cycles. Woodhead Publ., 2017.
7. Rogalev A. e. a. Research and Development of the Oxy-fuel Combustion Power Cycles with CO2 Recirculation. Energies. 2021;14(10):2927.
8. Allam R.J. e. a. The Oxy-fuel, Supercritical CO2 Allam Cycle: New Cycle Developments To Produce Even Lower-Cost Electricity from Fossil Fuels Without Atmospheric Emissions. Proc. Turbo Expo: Power for Land, Sea, and Air. N.-Y.: American Soc. Mechanical Engineers, 2014;45660:V03BT36A016.
9. Akshat R. Pervaya v Mire Elektrostantsiya na Iskopaemom Toplive s Nulevym Urovnem Vybrosov. Gazoturbinnye Tekhnologii. 2018;2:14—17. (in Russian).
10. Alsarhan L.M. e. a. Circular Carbon Economy (CCE): a Way to Invest CO2 and Protect the Environment, a Review. Sustainability. 2021;13(21):11625.
11. Martin S. e. a. Progress Update on the Allam Cycle: Commercialization of Net Power and the Net Power Demonstration Facility. Proc. XIV Greenhouse Gas Control Technol. Conf. Melbourne, 2018:21—26.
12. Allam R. e. a. Demonstration of the Allam Cycle: an Update on the Development Status of a High Efficiency Supercritical Carbon Dioxide Power Process Employing Full Carbon Capture. Energy Proc. 2017;114:5948—5966.
13. Han J. C., Dutta S., Ekkad S. Gas Turbine Heat Transfer and Cooling Technology. Boca Raton: CRC Press, 2012.
14. Fomin Y.D. e. a. Thermodynamic Properties of Supercritical Carbon Dioxide: Widom and Frenkel Lines. Phys. Rev. E. 2015;91(2):022111.
15. Sciubba E. Air-cooled Gas Turbine Cycles. Part 1: an Analytical Method for the Preliminary Assessment Of Blade Cooling Flow Rates. Energy. 2015;83:104—114.
16. Albeirutty M.H., Alghamdi A.S., Najjar Y.S. Heat Transfer Analysis for a Multistage Gas Turbine Using Different Blade-cooling Schemes. Appl. Thermal Eng. 2004;24(4):563—577.
17. Torbidoni L., Horlock J. H. A New Method to Calculate the Coolant Requirements of a High-temperature Gas Turbine Blade. J. Turbomach. 2005;127(1):191—199.
18. Wahl A. e. a. Heat Transfer Correlation for sCO2 Cooling in a 2 mm Tube. J. Supercritical Fluids. 2021;173:105221.
19. Sullivan N. On the Local Heat Transfer Behavior or Supercritical Carbon Dioxide [Elektron. Resurs] https://commons.erau.edu/edt/618/ (Data Obrashcheniya 08.08.2023).
20. Dang C., Hihara E. In-tube Cooling Heat Transfer of Supercritical Carbon Dioxide Part 1. Experimental Measurement. Intern. J. Refrigeration. 2004;27(7):736—747.
21. Králik J. CFD Simulation of Air Flow Over an Object with Gable Roof, Revised with Y+ Approach. Trans. VSB. Civil Eng. Series. 2016;16(2):85—94
22. Ying Q. e. a. Vortex Patterns Investigation and Enstrophy Analysis in a Small Scale S-CO2 Axial Turbine. Energies. 2021;14(19):6112.
23. Huber M.L. e. a. The NIST REFPROP Database for Highly Accurate Properties of Industrially Important Fluids. Industrial & Eng. Chem. Research. 2022;61(42):15449—15472.
24. Terrell E.J., Mouzon B.D., Bogard D.G. Convective Heat Transfer Through Film Cooling Holes of a Gas Turbine Blade Leading Edge. Proc. Turbo Expo: Power for Land, Sea and Air. 2005;47268:833—844.
25. Deych M.E., Filippov G.A., Lazarev L.Ya. Atlas Profiley Reshetok Osevykh Turbomashin. M.: Mashinostroenie, 1965. (in Russian).
26. Li B. e. a. Design of Thermal Barrier Coatings Thickness for Gas Turbine Blade Based on Finite Element Analysis. Mathematical Problems in Eng. 2017;2017:1—14
---
For citation: Smirnov A.O., Berdyugin K.A., Osipov V.R., Tishchenko V.A. Convective Cooling of Blades in a Turbine Driven by Supercritical Carbon Dioxide. Bulletin of MPEI. 2024;3:78—88. (in Russian). DOI: 10.24160/1993-6982-2024-3-78-88
---
Conflict of interests: the authors declare no conflict of interest

Published

2024-02-20

Issue

Section

Turbomachines and Piston Engines (Technical Sciences) (2.4.7)