The Use of Simulation Modeling to Study the Stability of Ziegler’s Pendulum
DOI:
https://doi.org/10.24160/1993-6982-2024-3-127-134Keywords:
double-link pendulum, non-conservative load, flutter, divergence, chaotic motionsAbstract
The stability and post-critical behavior of Ziegler’s pendulum under the effect of potential and follower forces are studied by simulation modeling in the Simulink software environment. The mathematical formulation of the problem is given; the equations of motion are derived, and the simulation modeling scheme is presented. The trivial equilibrium state is analyzed using the Routh–Hurwitz criterion. By using the developed model and under the control of numerical integration, the stability domain boundaries are determined depending on the values of external load parameters. The effect of energy dissipation on the position of these boundaries is investigated; the time histories of generalized coordinates after loss of stability are obtained; the chaotic motion of the considered deterministic nonlinear system in the post-critical domain is illustrated, and the phase portraits and the Poincare cross section are given. Using the developed scheme, the pendulum behavior under various loads can be studied, and corresponding types of the nonlinear non-conservative system dynamic behavior can be observed: the process of settling equilibrium conditions in the stability domain, loss of stability when crossing the boundary, for example, hard loss of stability corresponding to divergence and Andronov–Hopf bifurcation, corresponding to a soft loss of stability. These can be periodic motions (limit cycles), quasi-periodic and chaotic motions, a so-called deterministic chaos.
References
2. Болотин В.В. Неконсервативные задачи теории упругой устойчивости. М.: Физматгиз, 1961.
3. Радин В.П., Самогин Ю.Н., Чирков В.П., Щугорев А.В. Решение неконсервативных задач теории устойчивости. М.: Физматлит, 2017.
4. Петровский А.В. Устойчивость и послекритическое поведение обращенного пространственного маятника при непотенциальном нагружении // Известия РАН. Серия «Механика твердого тела». 2002. № 1. С. 165—176.
5. Agafonov S.A. Stability of Nonconservative Systems and Applications // J. Math. Sci. 2005. V. 125. Pp. 556—578.
6. Kirillov O.N. Nonconservative Stability Problems of Modern Physics. Berlin: De Gruyter, 2013.
7. Радин В.П., Чирков В.П., Щугорев А.В., Щугорев В.Н. Некоторые особенности неконсервативных задач устойчивости механических систем // Известия вузов. Серия «Машиностроение». 2018. № 8. С. 64—89.
8.Окопный Ю.А., Радин В.П., Чирков В.П. Исследование устойчивости и послекритического поведения двойного маятника при непотенциальном нагружении // Инженерный журнал. 2004. № 10. С. 42—46.
9. Дьяконов В.П. MATLAB 6/6.1/6.5 Simulink 4/5 в математике и моделировании. Полное руководство пользователя. М.: СОЛОН-Пресс. – 2003.
10. Гультяев Ф.К. MATLAB 5.3. Имитационное моделирование в среде Windows. СПб.: Корона Принт, 2001.
11. Bolotin V.V., Zhinzher N.I. Effects of Damping on Stability of Elastic Systems Subjected to Nonconservative Forces // Int. J. Solid Struct. 1969. V. 5. No. 9. Pp. 965—989.
12. Tommasini M., Kirillov O.N., Misseroni D., Bigoni D. The Destabilizing Effect of External Damping: Singular Flutter Boundary for the Pfluger Column with Vanishing External Dissipation // J. Mech. Phys. Solids. 2016. V. 91. Pp. 204—215.
13. Sugiyama Y., Langthjem M., Physical Mechanism of the Destabilizing Effect of Damping in Continuous Non-conservative Dissipative Systems // Int. J. Non-linear Mech. 2007. V. 42(1). Pp. 132—145.
14. Пуанкаре А. Избранные труды в 3-т. М.: Наука, 1971, 1972.
---
Для цитирования: Радин В.П., Позняк Е.В., Новикова О.В., Цой В.Э., Минаков Б.В. Применение имитационного моделирования для исследования устойчивости маятника Циглера // Вестник МЭИ. 2024. № 3. С. 127—134. DOI: 10.24160/1993-6982-2024-3-127-134.
#
1. Ziegler H. Die Stabilititatskriterien der Elastomechanik. Ing.-Arch. 1952;20;1:49—56.
2. Bolotin V.V. Nekonservativnye Zadachi Teorii Uprugoy Ustoychivosti. M.: Fizmatgiz, 1961. (in Russian).
3. Radin V.P., Samogin Yu.N., Chirkov V.P., Shchugorev A.V. Reshenie Nekonservativnykh Zadach Teorii Ustoychivosti. M.: Fizmatlit, 2017. (in Russian).
4. Petrovskiy A.V. Ustoychivost' i Poslekriticheskoe Povedenie Obrashchennogo Prostranstvennogo Mayatnika pri Nepotentsial'nom Nagruzhenii. Izvestiya RAN. Seriya «Mekhanika Tverdogo Tela». 2002;1:165—176. (in Russian).
5. Agafonov S.A. Stability of Nonconservative Systems and Applications. J. Math. Sci. 2005;125:556—578.
6. Kirillov O.N. Nonconservative Stability Problems of Modern Physics. Berlin: De Gruyter, 2013.
7. Radin V.P., Chirkov V.P., Shchugorev A.V., Shchugorev V.N. Nekotorye Osobennosti Nekonservativnykh Zadach Ustoychivosti Mekhanicheskikh Sistem. Izvestiya Vuzov. Seriya «Mashinostroenie». 2018;8:64—89. (in Russian).
8. Okopnyy Yu.A., Radin V.P., Chirkov V.P. Issledovanie Ustoychivosti i Poslekriticheskogo Povedeniya Dvoynogo Mayatnika pri Nepotentsial'nom Nagruzhenii. Inzhenernyy Zhurnal. 2004;10:42—46. (in Russian).
9. D'yakonov V.P. MATLAB 6/6.1/6.5 Simulink 4/5 v Matematike i Modelirovanii. Polnoe Rukovodstvo Pol'zovatelya. M.: SOLON-Press. 2003. (in Russian).
10. Gul'tyaev F.K. MATLAB 5.3. Imitatsionnoe Modelirovanie v Srede Windows. SPb.: Korona Print, 2001. (in Russian).
11. Bolotin V.V., Zhinzher N.I. Effects of Damping on Stability of Elastic Systems Subjected to Nonconservative Forces. Int. J. Solid Struct. 1969;5;9:965—989.
12. Tommasini M., Kirillov O.N., Misseroni D., Bigoni D. The Destabilizing Effect of External Damping: Singular Flutter Boundary for the Pfluger Column with Vanishing External Dissipation. J. Mech. Phys. Solids. 2016;91:204—215.
13. Sugiyama Y., Langthjem M., Physical Mechanism of the Destabilizing Effect of Damping in Continuous Non-conservative Dissipative Systems. Int. J. Non-linear Mech. 2007;42(1):132—145.
14. Puankare A. Izbrannye Trudy v 3 T. M.: Nauka, 1971, 1972. (in Russian)
---
For citation: Radin V.P., Poznyak E.V., Novikova O.V., Tsoy V.E., Minakov B.V. The Use of Simulation Modeling to Study the Stability of Ziegler’s Pendulum. Bulletin of MPEI. 2024;3:127—134. (in Russian). DOI: 10.24160/1993-6982-2024-3-127-134

