Stability of the Pipeline Section on an Elastic Foundation with an Additional Support
DOI:
https://doi.org/10.24160/1993-6982-2024-3-141-147Keywords:
pipeline section with additional support, elastic foundation, dynamic stability analysis method, eigenfunctions method, flutter, divergenceAbstract
The stability of a pipeline section located on an elastic foundation, rigidly fixed at one end, and having an elastic inertial support connected to the foundation at the other end is investigated. By using the dynamic method, the influence of various pipeline fixing parameters, such as the elastic foundation stiffness, and the stiffness and mass of the additional support on the pipeline stability is analyzed. The stability domain boundaries are constructed on the plane of parameters characterizing the velocity and mass per unit length of the flowing liquid.
References
1. Bolotin V.V. Dynamic Instabilities in Mechanics of Structures // Appl. Mech. Rev. 1999. V. 52(1). Pp. 1—9.
2. Гуськов А.М., Пановко Г.Я. Особенности динамики механических систем под действием неконсервативных (циркуляционных) сил. М.: Изд-во МГТУ им. Н.Э. Баумана, 2013.
3. Kirilov O.N. Nonconservative Stability Problems of Modern Physics. Berlin: Walter de Gruyter GmbH & Co KG, 2021.
4. Hellum A., Mukherjee R., Benard A., Hull A.J. Modeling and Simulation of the Dynamics of a Submersible Propelled by a Fluttering Fluid-conveying Tail // J. Fluids Struct. 2013. V. 36. Pp. 83—110.
5. Bigoni D., Kirillov O.N., Misseroni D., Noselli G., Tommasini M. Flutter and Divergence Instability in the Pfluger Column: Experimental Evidence of the Ziegler Destabilization Paradox // J. Mech. Phys. Solids. 2018. V. 116. Pp. 99—116.
6. Paidoussis M.P. Dynamics of Tubular Cantilevers Conveying Fluid // J. Mech. Eng. Sci. 1970. V. 612(2). Pp. 85—103.
7. Elishakoff I., Vittori P. A Paradox of Non-monotonicity in Stability of Pipes Con-Veying Fluid // Theor. and Appl. Mech. 2005. V. 32. Pp. 235—282.
8. Marzani A. e. a. FEM Formulation for Dynamic Instability of Fluid-conveying Pipe on Nonuniform Elastic Foundation // Int. J. Mechanics Based Design of Structures and Machines 2012. V. 40(1). Pp. 83—95.
9. Bahaadini R., Hosseini M. Flow-induced and Mechanical Stability of Cantilevercarbon Nanotubes Subjected to an Axial Compressive Load // Appl. Math. Model. 2018. V. 59. Pp. 597—613.
10. Wang L., Dai H.L., Ni Q. Nonconservative Pipes Conveying Fluid: Evolution of Mode Shapes with Increasing Flow Velocity // J. Vibration and Control. 2015. V. 21(6). Pp. 3359—3367.
11. Bahaadini R. e. a. Stability Analysis of Composite Thin-walled Pipes Conveying Fluid // Ocean Eng. 2018. V. 160. Pp. 311—323.
12. Tornabene F. e. a. Critical Flow Speeds of Pipes Conveying Fluid Using the Generalized Differential Quadrature Method // Adv. Theor. Appl. Mech. 2010. V. 3. Pp. 121—138.
13. Болотин В.В. Неконсервативные задачи теории упругой устойчивости. М.: Физматгиз, 1961.
14. Радин В.П. и др. Динамическая устойчивость трубопровода с протекающей по нему жидкостью // Известия высших учебных заведений. Серия «Машиностроение». 2020. № 11. C. 3—12.
15. Радин В.П. и др. Методы определения критических значений неконсервативных нагрузок в задачах устойчивости механических систем // Известия высших учебных заведений. Серия «Машиностроение». 2019. № 10. C. 3—13.
16. Радин В.П. и др. Решение неконсервативных задач теории устойчивости. М.: Физматлит, 2017.
---
Для цитирования: Радин В.П., Чирков В.П., Цой В.Э., Стенина Т.Е., Минаков Б.В. Устойчивость участка трубопровода на упругом основании с дополнительной опорой // Вестник МЭИ. 2024. № 3. С. 141—147. DOI: 10.24160/1993-6982-2024-3-141-147
---
Конфликт интересов: авторы заявляют об отсутствии конфликта интересов
#
1. Bolotin V.V. Dynamic Instabilities in Mechanics of Structures. Appl. Mech. Rev. 1999;52(1):1—9.
2. Gus'kov A.M., Panovko G.Ya. Osobennosti Dinamiki Mekhanicheskikh Sistem pod Deystviem Nekonservativnykh (Tsirkulyatsionnykh) Sil. M.: Izd-vo MGTU im. N.E. Baumana, 2013. (in Russian).
3. Kirilov O.N. Nonconservative Stability Problems of Modern Physics. Berlin: Walter de Gruyter GmbH & Co KG, 2021.
4. Hellum A., Mukherjee R., Benard A., Hull A.J. Modeling and Simulation of the Dynamics of a Submersible Propelled by a Fluttering Fluid-conveying Tail. J. Fluids Struct. 2013;36:83—110.
5. Bigoni D., Kirillov O.N., Misseroni D., Noselli G., Tommasini M. Flutter and Divergence Instability in the Pfluger Column: Experimental Evidence of the Ziegler Destabilization Paradox. J. Mech. Phys. Solids. 2018;116:99—116.
6. Paidoussis M.P. Dynamics of Tubular Cantilevers Conveying Fluid. J. Mech. Eng. Sci. 1970;612(2):85—103.
7. Elishakoff I., Vittori P. A Paradox of Non-monotonicity in Stability of Pipes Con-Veying Fluid. Theor. and Appl. Mech. 2005;32:235—282.
8. Marzani A. e. a. FEM Formulation for Dynamic Instability of Fluid-conveying Pipe on Nonuniform Elastic Foundation. Int. J. Mechanics Based Design of Structures and Machines 2012;40(1):83—95.
9. Bahaadini R., Hosseini M. Flow-induced and Mechanical Stability of Cantilevercarbon Nanotubes Subjected to an Axial Compressive Load. Appl. Math. Model. 2018;59:597—613.
10. Wang L., Dai H.L., Ni Q. Nonconservative Pipes Conveying Fluid: Evolution of Mode Shapes with Increasing Flow Velocity. J. Vibration and Control. 2015;21(6):3359—3367.
11. Bahaadini R. e. a. Stability Analysis of Composite Thin-walled Pipes Conveying Fluid. Ocean Eng. 2018;160:311—323.
12. Tornabene F. e. a. Critical Flow Speeds of Pipes Conveying Fluid Using the Generalized Differential Quadrature Method. Adv. Theor. Appl. Mech. 2010;3:121—138.
13. Bolotin V.V. Nekonservativnye Zadachi Teorii Uprugoy Ustoychivosti. M.: Fizmatgiz, 1961. (in Russian).
14. Radin V.P. i dr. Dinamicheskaya Ustoychivost' Truboprovoda s Protekayushchey po Nemu Zhidkost'yu. Izvestiya Vysshikh Uchebnykh Zavedeniy. Seriya «Mashinostroenie». 2020. № 11. C. 3—12. (in Russian).
15. Radin V.P. i dr. Metody Opredeleniya Kriticheskikh Znacheniy Nekonservativnykh Nagruzok v Zadachakh Ustoychivosti Mekhanicheskikh Sistem. Izvestiya Vysshikh Uchebnykh Zavedeniy. Seriya «Mashinostroenie». 2019. № 10. C. 3—13. (in Russian).
16. Radin V.P. i dr. Reshenie Nekonservativnykh Zadach Teorii Ustoychivosti. M.: Fizmatlit, 2017. (in Russian)
---
For citation: Radin V.P., Chirkov V.P., Tsoy V.E., Stenina T.E., Minakov B.V. Stability of the Pipeline Section on an Elastic Foundation with an Additional Support. Bulletin of MPEI. 2024;3:141—147. (in Russian). DOI: 10.24160/1993-6982-2024-3-141-147
---
Conflict of interests: the authors declare no conflict of interest
2. Гуськов А.М., Пановко Г.Я. Особенности динамики механических систем под действием неконсервативных (циркуляционных) сил. М.: Изд-во МГТУ им. Н.Э. Баумана, 2013.
3. Kirilov O.N. Nonconservative Stability Problems of Modern Physics. Berlin: Walter de Gruyter GmbH & Co KG, 2021.
4. Hellum A., Mukherjee R., Benard A., Hull A.J. Modeling and Simulation of the Dynamics of a Submersible Propelled by a Fluttering Fluid-conveying Tail // J. Fluids Struct. 2013. V. 36. Pp. 83—110.
5. Bigoni D., Kirillov O.N., Misseroni D., Noselli G., Tommasini M. Flutter and Divergence Instability in the Pfluger Column: Experimental Evidence of the Ziegler Destabilization Paradox // J. Mech. Phys. Solids. 2018. V. 116. Pp. 99—116.
6. Paidoussis M.P. Dynamics of Tubular Cantilevers Conveying Fluid // J. Mech. Eng. Sci. 1970. V. 612(2). Pp. 85—103.
7. Elishakoff I., Vittori P. A Paradox of Non-monotonicity in Stability of Pipes Con-Veying Fluid // Theor. and Appl. Mech. 2005. V. 32. Pp. 235—282.
8. Marzani A. e. a. FEM Formulation for Dynamic Instability of Fluid-conveying Pipe on Nonuniform Elastic Foundation // Int. J. Mechanics Based Design of Structures and Machines 2012. V. 40(1). Pp. 83—95.
9. Bahaadini R., Hosseini M. Flow-induced and Mechanical Stability of Cantilevercarbon Nanotubes Subjected to an Axial Compressive Load // Appl. Math. Model. 2018. V. 59. Pp. 597—613.
10. Wang L., Dai H.L., Ni Q. Nonconservative Pipes Conveying Fluid: Evolution of Mode Shapes with Increasing Flow Velocity // J. Vibration and Control. 2015. V. 21(6). Pp. 3359—3367.
11. Bahaadini R. e. a. Stability Analysis of Composite Thin-walled Pipes Conveying Fluid // Ocean Eng. 2018. V. 160. Pp. 311—323.
12. Tornabene F. e. a. Critical Flow Speeds of Pipes Conveying Fluid Using the Generalized Differential Quadrature Method // Adv. Theor. Appl. Mech. 2010. V. 3. Pp. 121—138.
13. Болотин В.В. Неконсервативные задачи теории упругой устойчивости. М.: Физматгиз, 1961.
14. Радин В.П. и др. Динамическая устойчивость трубопровода с протекающей по нему жидкостью // Известия высших учебных заведений. Серия «Машиностроение». 2020. № 11. C. 3—12.
15. Радин В.П. и др. Методы определения критических значений неконсервативных нагрузок в задачах устойчивости механических систем // Известия высших учебных заведений. Серия «Машиностроение». 2019. № 10. C. 3—13.
16. Радин В.П. и др. Решение неконсервативных задач теории устойчивости. М.: Физматлит, 2017.
---
Для цитирования: Радин В.П., Чирков В.П., Цой В.Э., Стенина Т.Е., Минаков Б.В. Устойчивость участка трубопровода на упругом основании с дополнительной опорой // Вестник МЭИ. 2024. № 3. С. 141—147. DOI: 10.24160/1993-6982-2024-3-141-147
---
Конфликт интересов: авторы заявляют об отсутствии конфликта интересов
#
1. Bolotin V.V. Dynamic Instabilities in Mechanics of Structures. Appl. Mech. Rev. 1999;52(1):1—9.
2. Gus'kov A.M., Panovko G.Ya. Osobennosti Dinamiki Mekhanicheskikh Sistem pod Deystviem Nekonservativnykh (Tsirkulyatsionnykh) Sil. M.: Izd-vo MGTU im. N.E. Baumana, 2013. (in Russian).
3. Kirilov O.N. Nonconservative Stability Problems of Modern Physics. Berlin: Walter de Gruyter GmbH & Co KG, 2021.
4. Hellum A., Mukherjee R., Benard A., Hull A.J. Modeling and Simulation of the Dynamics of a Submersible Propelled by a Fluttering Fluid-conveying Tail. J. Fluids Struct. 2013;36:83—110.
5. Bigoni D., Kirillov O.N., Misseroni D., Noselli G., Tommasini M. Flutter and Divergence Instability in the Pfluger Column: Experimental Evidence of the Ziegler Destabilization Paradox. J. Mech. Phys. Solids. 2018;116:99—116.
6. Paidoussis M.P. Dynamics of Tubular Cantilevers Conveying Fluid. J. Mech. Eng. Sci. 1970;612(2):85—103.
7. Elishakoff I., Vittori P. A Paradox of Non-monotonicity in Stability of Pipes Con-Veying Fluid. Theor. and Appl. Mech. 2005;32:235—282.
8. Marzani A. e. a. FEM Formulation for Dynamic Instability of Fluid-conveying Pipe on Nonuniform Elastic Foundation. Int. J. Mechanics Based Design of Structures and Machines 2012;40(1):83—95.
9. Bahaadini R., Hosseini M. Flow-induced and Mechanical Stability of Cantilevercarbon Nanotubes Subjected to an Axial Compressive Load. Appl. Math. Model. 2018;59:597—613.
10. Wang L., Dai H.L., Ni Q. Nonconservative Pipes Conveying Fluid: Evolution of Mode Shapes with Increasing Flow Velocity. J. Vibration and Control. 2015;21(6):3359—3367.
11. Bahaadini R. e. a. Stability Analysis of Composite Thin-walled Pipes Conveying Fluid. Ocean Eng. 2018;160:311—323.
12. Tornabene F. e. a. Critical Flow Speeds of Pipes Conveying Fluid Using the Generalized Differential Quadrature Method. Adv. Theor. Appl. Mech. 2010;3:121—138.
13. Bolotin V.V. Nekonservativnye Zadachi Teorii Uprugoy Ustoychivosti. M.: Fizmatgiz, 1961. (in Russian).
14. Radin V.P. i dr. Dinamicheskaya Ustoychivost' Truboprovoda s Protekayushchey po Nemu Zhidkost'yu. Izvestiya Vysshikh Uchebnykh Zavedeniy. Seriya «Mashinostroenie». 2020. № 11. C. 3—12. (in Russian).
15. Radin V.P. i dr. Metody Opredeleniya Kriticheskikh Znacheniy Nekonservativnykh Nagruzok v Zadachakh Ustoychivosti Mekhanicheskikh Sistem. Izvestiya Vysshikh Uchebnykh Zavedeniy. Seriya «Mashinostroenie». 2019. № 10. C. 3—13. (in Russian).
16. Radin V.P. i dr. Reshenie Nekonservativnykh Zadach Teorii Ustoychivosti. M.: Fizmatlit, 2017. (in Russian)
---
For citation: Radin V.P., Chirkov V.P., Tsoy V.E., Stenina T.E., Minakov B.V. Stability of the Pipeline Section on an Elastic Foundation with an Additional Support. Bulletin of MPEI. 2024;3:141—147. (in Russian). DOI: 10.24160/1993-6982-2024-3-141-147
---
Conflict of interests: the authors declare no conflict of interest
Downloads
Published
2024-02-20
Issue
Section
Mechanics of Deformable Solids (Technical Sciences) (1.1.8)

