Development of an Electrotechnological Energy-saving Installation for Heating Rotating Disks in the Electromagnetic Field of Permanent Magnets

Authors

  • Александр [Aleksandr] Роальдович [R.] Лепешкин [Lepeshkin]
  • Максим [Maksim] Андреевич [A.] Федин [Fedin]
  • Александр [Aleksandr] Борисович [B.] Кувалдин [Kuvaldin]
  • Сергей [Sergey] Семенович [S.] Кондрашов [Kondrashov]
  • Александр [Aleksandr] Владимирович [V.] Данченко [Danchenko]
  • Мария [Mariya] Андреевна [A.] Булатенко [Bulatenko]

DOI:

https://doi.org/10.24160/1993-6982-2024-4-49-56

Keywords:

electrotechnological installation, heating, rotating disk, electromagnetic field, permanent magnet, rotation speed, electric motor, electrical characteristics

Abstract

An analysis of various types of electric heating of rotating parts used at domestic and foreign stands and installations in industry was carried out. Induction heating to ensure the thermal state of turbine disks has advantages over other types of heating. Tests and research using induction heating of rotating disks on installations and stands are associated with significant material costs.

The paper presents an electrotechnological energy-saving installation designed for heating rotating disks in the electromagnetic field of permanent magnets. The technical challenge is to reduce energy consumption, which is achieved through the use of a heating method with strong permanent magnets in a developed installation without the use of induction heaters and a cooling system.

The technical data and capabilities of the blocks and devices of the developed electrical installation are provided. The features of the processes of heating a rotating disk and the operation of an electric motor are considered, taking into account the braking effect of the magnetic field of the magnets. The results of studies of the thermal state of a rotating disk in the electromagnetic field of permanent magnets at different rotation frequencies and the electrical characteristics of the electric motor are presented. The experimental results obtained show that using strong permanent magnets can increase the heating efficiency of rotating disks. The developed installation and method with strong permanent magnets can be used to heat rotating disks of turbomachines in the aviation and metallurgical industries, energy and mechanical engineering.

Author Biographies

Александр [Aleksandr] Роальдович [R.] Лепешкин [Lepeshkin]

Dr.Sci. (Techn.), Professor of Power Supply of Industrial Enterprises and Electrical Technology Dept., NRU MPEI, e-mail: LepeshkinAR@mpei.ru

Максим [Maksim] Андреевич [A.] Федин [Fedin]

Dr.Sci. (Techn.), Professor of Power Supply of Industrial Enterprises and Electrical Technology Dept., NRU MPEI, e-mail: FedinMA@mail.ru

Александр [Aleksandr] Борисович [B.] Кувалдин [Kuvaldin]

Dr.Sci. (Techn.), Professor of Power Supply of Industrial Enterprises and Electrical Technology Dept., NRU MPEI

Сергей [Sergey] Семенович [S.] Кондрашов [Kondrashov]

Ph.D. (Techn.), Leading Engineer of Power Supply of Industrial Enterprises and Electrical Technology Dept., NRU MPEI

Александр [Aleksandr] Владимирович [V.] Данченко [Danchenko]

Ph.D.-student of Power Supply of Industrial Enterprises and Electrical Technology Dept., NRU MPEI

Мария [Mariya] Андреевна [A.] Булатенко [Bulatenko]

Ph.D. (Economic.), Assistant Professor of Power Supply of Industrial Enterprises and Electrical Technology Dept., NRU MPEI

References

1. Кувалдин А.Б., Лепешкин А.Р. Скоростные режимы индукционного нагрева и термонапряжения в изделиях. М.: Инфра-М, 2019.
2. Пат. № 2416869 РФ. Способ получения энергии и устройство для его реализации / Кувалдин А.Б., Лепешкин А.Р., Лепешкин С.А. // Бюл. изобрет. 2011. № 11.
3. Кувалдин А.Б., Лепешкин А.Р., Лепешкин С.А. Метод испытаний дисков турбомашин и бандажей роторов турбогенераторов с использованием индукционного нагрева // Электричество. 2009. № 7. С. 33—38.
4. Кувалдин А.Б., Лепешкин А.Р. Выбор режимов индукционного нагрева и индукторов для моделирования термонапряженного состояния дисков турбин // Электротехника. 1998. № 5. С. 39—46.
5. Кувалдин А.Б., Лепешкин А.Р. Особенности термомеханического нагружения дисков турбомашин с применением индукционного нагрева // Вестник МЭИ. 1996. № 3. С. 107—112.
6. Маннанов Э.Р., Галунин С.А., Никаноров А.Н., Наке Б., Козулина Т.П. Разработка индукционных систем для нагрева дисков // Научно-технические ведомости СПбГПУ. Серия «Физико-математические науки». 2019. Т. 12. № 2. С. 23—31.
7. Mannanov Е., Galunin S., Shatunov A. Numerical Modeling of Induction Heating Systems with Load of Azimuthal Periodicity // E3S Web Conf. 2019. V. 140. P. 10009.
8. Zgraja J. Simplified Simulation Technique of Rotating, Induction Heated, Calender Rolls for Study of Temperature Field Control // Open Phys. 2018. V. 16. Pp. 326—331.
9. Fraczyk A., Kucharski J. Surface Temperature Control of a Rotating Cylinder Heated by Moving Inductors // App. Therm. Eng. 2017. V. 125. Pp. 767—779.
10. Mannanov E., Galunin S., Nikanorov A., Nacke B. Simulation Algorithm for Induction Heating of Rotated Workpieces with Complex Shape // XVIII International UIE Congress Electrotechnologies for Material Proc. Hannover, 2017. Pp. 491—496.
11. Mannanov E.R., Muratov A.A., Galunin S.A. Numerical Modeling in Heating Systems by Rotation // Electro. Electrical Engineering, Power Industry, Electrical Industry. 2016. No. 1. Pp. 20—22.
12. Mannanov E., Muratov A., Galunin S. Numerical Investigation of Spatial Control Tools of Temperature Distribution in the Heating Systems by Rotation // Research and Development of Young Scientists: the Collected Reports of the VI Intern. Youth Scientific and Practical Conf. Novosibirsk, 2015. Pp. 71—75.
13. Witek L. Stress Analysis of Turbine Components under Spin Rig Thermomechanical Condition // Aviation. 2004. V. VIII. No. 4. Pp. 21—26.
14. Karban P., Mach F., Doležel I., Barglik J. Higher-order Finite Element Modeling of Rotational Induction Heating of Nonferromagnetic Cylindrical Billets // Compel. 2011. V. 30. Pp. 1517—1527.
15. Pat. No. 2644826 EP. A System for Inductive Heating of Turbine Rotor Disks / Nimptsch H., Exnowski S., Kulig S. // Bull. 2013. No. 40.
16. Topouris S. e. a. Heat Dissipation from Stationary Passenger Car Brake Discs // J. Mechanical Eng. 2020. V. 66(1). Pp. 15—28.
17. Luberti D. e. a. Design and Testing of a Rig to Investigate Buoyancy-induced Heat Transfer in Aero-engine Compressor Rotors // J. Engineering Gas Turbines and Power: Trans. ASME. 2020. V. 143(4). P. 041030.
18. Endo H., Wetherbee R., Kaushal N. Advancement in Heated Spin Testing Technologies // Proc. ASME Turbine Techn. Conf. and Exposition. San Antonio, 2013.
---
Для цитирования: Лепешкин А.Р., Федин М.А., Кувалдин А.Б., Кондрашов С.С., Данченко А.В., Булатенко М.А. Разработка алгоритма обнаружения и классификации замыкания внутри цепочки фотоэлектрических модулей в режиме реального времени // Вестник МЭИ. 2024. № 4. С. 49—56. DOI: 10.24160/1993-6982-2024-4-49-56.
#
1. Kuvaldin A.B., Lepeshkin A.R. Skorostnye Rezhimy Induktsionnogo Nagreva i Termonapryazheniya v Izdeliyakh. M.: Infra-M, 2019. (in Russian).
2. Pat. № 2416869 RF. Sposob Polucheniya Energii i Ustroystvo Dlya Ego Realizatsii. Kuvaldin A.B., Lepeshkin A.R., Lepeshkin S.A. Byul. Izobret. 2011;11. (in Russian).
3. Kuvaldin A.B., Lepeshkin A.R., Lepeshkin S.A. Metod Ispytaniy Diskov Turbomashin i Bandazhey Rotorov Turbogeneratorov s Ispol'zovaniem Induktsionnogo Nagreva. Elektrichestvo. 2009;7:33—38. (in Russian).
4. Kuvaldin A.B., Lepeshkin A.R. Vybor Rezhimov Induktsionnogo Nagreva i Induktorov dlya Modelirovaniya Termonapryazhennogo Sostoyaniya Diskov Turbin. Elektrotekhnika. 1998;5:39—46. (in Russian).
5. Kuvaldin A.B., Lepeshkin A.R. Osobennosti Termomekhanicheskogo Nagruzheniya Diskov Turbomashin S Primeneniem Induktsionnogo Nagreva. Vestnik MEI. 1996;3:107—112. (in Russian).
6. Mannanov E.R., Galunin S.A., Nikanorov A.N., Nake B., Kozulina T.P. Razrabotka Induktsionnykh Sistem dlya Nagreva Diskov. Nauchno-tekhnicheskie Vedomosti SPbGPU. Seriya «Fiziko-matematicheskie Nauki». 2019;12;2:23—31. (in Russian).
7. Mannanov E., Galunin S., Shatunov A. Numerical Modeling of Induction Heating Systems with Load of Azimuthal Periodicity. E3S Web Conf. 2019;140:10009.
8. Zgraja J. Simplified Simulation Technique of Rotating, Induction Heated, Calender Rolls for Study of Temperature Field Control. Open Phys. 2018;16:326—331.
9. Fraczyk A., Kucharski J. Surface Temperature Control of a Rotating Cylinder Heated by Moving Inductors. App. Therm. Eng. 2017;125:767—779.
10. Mannanov E., Galunin S., Nikanorov A., Nacke B. Simulation Algorithm for Induction Heating of Rotated Workpieces with Complex Shape. XVIII International UIE Congress Electrotechnologies for Material Proc. Hannover, 2017:491—496.
11. Mannanov E.R., Muratov A.A., Galunin S.A. Numerical Modeling in Heating Systems by Rotation // Electro. Electrical Engineering, Power Industry, Electrical Industry. 2016;1:20—22.
12. Mannanov E., Muratov A., Galunin S. Numerical Investigation of Spatial Control Tools of Temperature Distribution in the Heating Systems by Rotation. Research and Development of Young Scientists: the Collected Reports of the VI Intern. Youth Scientific and Practical Conf. Novosibirsk, 2015:71—75.
13. Witek L. Stress Analysis of Turbine Components under Spin Rig Thermomechanical Condition. Aviation. 2004;VIII;4:21—26.
14. Karban P., Mach F., Doležel I., Barglik J. Higher-order Finite Element Modeling of Rotational Induction Heating of Nonferromagnetic Cylindrical Billets. Compel. 2011;30:1517—1527.
15. Pat. No. 2644826 EP. A System for Inductive Heating of Turbine Rotor Disks. Nimptsch H., Exnowski S., Kulig S. Bull. 2013;40.
16. Topouris S. e. a. Heat Dissipation from Stationary Passenger Car Brake Discs. J. Mechanical Eng. 2020;66(1):15—28.
17. Luberti D. e. a. Design and Testing of a Rig to Investigate Buoyancy-induced Heat Transfer in Aero-engine Compressor Rotors. J. Engineering Gas Turbines and Power: Trans. ASME. 2020;143(4):041030.
18. Endo H., Wetherbee R., Kaushal N. Advancement in Heated Spin Testing Technologies. Proc. ASME Turbine Techn. Conf. and Exposition. San Antonio, 2013
---
For citation: Lepeshkin A.R., Fedin M.A., Kuvaldin A.B., Kondrashov S.S., Danchenko A.V., Bulatenko M.A. Development of an Electrotechnological Energy-saving Installation for Heating Rotating Disks in the Electromagnetic Field of Permanent Magnets. Bulletin of MPEI. 2024;4:49—56. (in Russian). DOI: 10.24160/1993-6982-2024-4-49-56

Published

2024-06-18

Issue

Section

Electrotechnology and Electrophysics (Technical Sciences) (2.4.4)