Kinetics of Liquid Cooling of Bodies in Flow Devices without Phase Transition
DOI:
https://doi.org/10.24160/1993-6982-2024-4-116-124Keywords:
model, cooling, product, cooling chamber, impellerAbstract
Based on the hydrodynamic structure of ideal mixing, a class model with concentrated parameters is proposed to describe the kinetics of convective cooling of products of various geometries without a phase transition of a liquid cooler in specialized tanks equipped with an impeller to create a pumping effect and a circulation flow. There is no need to set boundary conditions; formalize them using balance relations in the form of the Cauchy problem for a system of linear differential equations in ordinary derivatives with respect to the temperature of the coolant and products and obtain an analytical solution. To substantiate the assumptions made, a specific example of water cooling of a product in the form of a homogeneous metal ball in a chamber corresponding to industrial standard sizes is considered. The results of calculations on the cooling rate of the ball correlate with the classical solution for cooling the ball in an axisymmetric formulation under a boundary condition of the 3rd kind on its wetted surface. The model is used to quantify the intensifying factors: an increase in the flow rate of the cooler; the design and speed of the impeller; the use of nanofluid as a cooler. In addition, the model takes into account the heat exchange with the environment through the wall of the cooling chamber. It is shown that the proposed model is also applicable for cooling bodies in non-flowing apparatuses. The described approach can be applied for experimental processing of the thermogram of the cooler at the outlet of the cooling chamber to verify the heat transfer coefficient from products of complex topology under various hydrodynamic flow regimes controlled by the impeller rotation frequency.
References
2. Aloui F., Varuvel E.G., Sonthalia A. Handbook of Thermal Management Systems. N.-Y.: Elsevier, 2023.
3. Shavrin O.I., Dementiyev V.B., Maslov L.N., Zasypkin A.L. The Quality of the Surface of Thermomechanically Hardened Cylindrical Items. Izhevsk: IPM UrO RAN, 2006.
4. Makarov S.S., Khramov S.N., Chekmyshev K.E. The Design of Sprayer Device for Hardening Exisymmetrical Treatment // Yoshkar-Ola: Novyy Universitet. Serriya «Tekhnicheskie nauki». 2012. No. 4. Pp. 22—25.
5. Lipanov A.M., Makarov S.S. Numerical Solutions of the Problem of Cooling a High-temperature Solid Metal Cylinder by the Water and Air Flow // Mashinostroenie i Inzhenernoe Obrazovanie. 2014. No. 1. Pp. 36—42.
6. Kothandaraman C.P. Fundamentals of Heat and Mass Transfer. New Delhi: New Age International (P) Limited Publ., 2006.
7. Korkmaz M.E., Gupta M.K., Ross N.S., Sivalingam V. Implementation of Green Cooling/Lubrication Strategies in Metal Cutting Industries: a State of the Art Fowards Sustainable Future And Challenges // Sustainable Materials and Technol. 2023. V. 36. P. e00641.
8. Makarov S.S., Dementyiev V.B., Makarova E.V. Mathematical Modeling of Cooling High-temperature Cylindrical Work-pieces // Proc. Eng. 2016. V. 150. Pp. 393—399.
9. Pramanik A. Machining and Tribology: Processes, Surfaces, Coolants, and Modeling. N.-Y.: Elsevier Inc., 2022.
10. Yang G., Fan X., Chen X., Huang X., Li X. Optimization of Cooling Process of Iron Ore Pellets Based on Mathematical Model and Data Mining // J. Iron and Steel Res. Int. 2015. V. 22. Pp. 2002—2008.
11. Seneviratne M.A. Practical Approach to Water Conservation for Commercial and Industrial Facilities. N.-Y.: Elsevier Ltd., 2006.
12. Диткин В.А., Прудников А.П. Интегральное преобразование и операционное исчисление. М.: Наука, 1974.
13. Заплатин В.Н., Сапожников Ю.И., Дубров А.В., Духнеев Ч.М. Основы материаловедения (металлообработка). М. Академия, 2017.
14. Физические величины. М.: Энергоатомиздат, 1991.
15. Стренк Ф. Перемешивание и аппараты с мешалками. М.: Химия, 1975.
16. Whitaker S. Forced Convection Heat Transfer Correlations for Flow in Pipes, Past Flat Plates, Single Cylinders, Singles Spheres, and For Flow in Packed Beds and Tube Burles // AIChE J. 1972. V. 18. Pp. 361—371.
17. Churchill S.W., Chu H.H.S. Correlating Equations for Laminar and Turbulent Free Convection From a Vertical Plate // Int. J. Heat Mass Transfer. 1975. V. 18. Pp. 1323—1329.
18. Лыков А.В. Теория теплопроводности. М.: Высшая школа, 1967.
19. Ozisik M.N. Heat Conduction. N.-Y.: John Wiley & Sons Inc., 1993.
20. Терехов В.И., Калинина С.В., Леманов В.В. Механизм теплопереноса в наножидкостях: современное состояние проблемы (обзор). Ч. 1. Синтез и свойства наножидкостей // Теплофизика и аэромеханика. 2010. Т. 17. № 1. С. 1—15
---
Для цитирования: Ряжских А.В., Коновалов Д.А., Хвостов А.А, Краснов А.А., Ряжских В.И. Кинетика жидкостного охлаждения тел в проточных аппаратах без фазовых превращений // Вестник МЭИ. 2024. № 4. С. 116—124. DOI: 10.24160/1993-6982-2024-4-116-124
#
---
1. Duroudier J.-P. Heat Transfer in the Chemical, Food and Pharmaceutical Industries. N.-Y.: ISTE Press — Elsevier, 2017.
2. Aloui F., Varuvel E.G., Sonthalia A. Handbook of Thermal Management Systems. N.-Y.: Elsevier, 2023.
3. Shavrin O.I., Dementiyev V.B., Maslov L.N., Zasypkin A.L. The Quality of the Surface of Thermomechanically Hardened Cylindrical Items. Izhevsk: IPM UrO RAN, 2006.
4. Makarov S.S., Khramov S.N., Chekmyshev K.E. The Design of Sprayer Device for Hardening Exisymmetrical Treatment. Yoshkar-Ola: Novyy Universitet. Serriya «Tekhnicheskie nauki». 2012;4:22—25.
5. Lipanov A.M., Makarov S.S. Numerical Solutions of the Problem of Cooling a High-temperature Solid Metal Cylinder by the Water and Air Flow. Mashinostroenie i Inzhenernoe Obrazovanie. 2014;1:36—42.
6. Kothandaraman C.P. Fundamentals of Heat and Mass Transfer. New Delhi: New Age International (P) Limited Publ., 2006.
7. Korkmaz M.E., Gupta M.K., Ross N.S., Sivalingam V. Implementation of Green Cooling/Lubrication Strategies in Metal Cutting Industries: a State of the Art Fowards Sustainable Future And Challenges. Sustainable Materials and Technol. 2023;36:e00641.
8. Makarov S.S., Dementyiev V.B., Makarova E.V. Mathematical Modeling of Cooling High-temperature Cylindrical Work-pieces. Proc. Eng. 2016;150:393—399.
9. Pramanik A. Machining and Tribology: Processes, Surfaces, Coolants, and Modeling. N.-Y.: Elsevier Inc., 2022.
10. Yang G., Fan X., Chen X., Huang X., Li X. Optimization of Cooling Process of Iron Ore Pellets Based on Mathematical Model and Data Mining. J. Iron and Steel Res. Int. 2015;22:2002—2008.
11. Seneviratne M.A. Practical Approach to Water Conservation for Commercial and Industrial Facilities. N.-Y.: Elsevier Ltd., 2006.
12. Ditkin V.A., Prudnikov A.P. Integral'noe Preobrazovanie i Operatsionnoe Ischislenie. M.: Nauka, 1974. (in Russian).
13. Zaplatin V.N., Sapozhnikov Yu.I., Dubrov A.V., Dukhneev Ch.M. Osnovy Materialovedeniya (Metalloobrabotka). M. Akademiya, 2017. (in Russian).
14. Fizicheskie Velichiny. M.: Energoatomizdat, 1991. (in Russian).
15. Strenk F. Peremeshivanie i Apparaty s Meshalkami. M.: Khimiya, 1975. (in Russian).
16. Whitaker S. Forced Convection Heat Transfer Correlations for Flow in Pipes, Past Flat Plates, Single Cylinders, Singles Spheres, and For Flow in Packed Beds and Tube Burles. AIChE J. 1972. V. 18:361—371.
17. Churchill S.W., Chu H.H.S. Correlating Equations for Laminar and Turbulent Free Convection From a Vertical Plate. Int. J. Heat Mass Transfer. 1975. V. 18:1323—1329.
18. Lykov A.V. Teoriya Teploprovodnosti. M.: Vysshaya Shkola, 1967. (in Russian).
19. Ozisik M.N. Heat Conduction. N.-Y.: John Wiley & Sons Inc., 1993.
20. Terekhov V.I., Kalinina S.V., Lemanov V.V. Mekhanizm Teploperenosa v Nanozhidkostyakh: Sovremennoe Sostoyanie Problemy (Obzor). Ch. 1. Sintez i Svoystva Nanozhidkostey. Teplofizika i Aeromekhanika. 2010;17;1:1—15. (in Russian)
---
For citation: Ryazhskih A.V., Konovalov D.A., Khvostov A.A., Krasnov A.A., Ryazhskih V.I. Kinetics of Liquid Cooling of Bodies in Flow Devices without Phase Transition. Bulletin of MPEI. 2024;4:116—124. (in Russian). DOI: 10.24160/1993-6982-2024-4-116-124
---
Conflict of interests: the authors declare no conflict of interest

