Methodology for Experimental Study of the Formation of a Barrier Curtain During Film Cooling of Parts of the Hot Path of a Gas Turbine
DOI:
https://doi.org/10.24160/1993-6982-2024-4-125-132Keywords:
gas turbine, cooling system, film cooling, barrier cooling, convective heat transferAbstract
The paper considers a method for experimentally studying the cooling efficiency of the streamlined surface of parts of the flow path of a gas turbine. A concept has been developed and an experimental stand has been created designed to simulate the processes occurring during barrier cooling of gas turbine blades. Methods for modeling and determining the efficiency of film-convective cooling have been developed. The results of the experiments will make it possible to develop recommendations for improving barrier cooling systems, as well as verify the developed methods for calculating barrier cooling systems. The stand is equipped with instruments for non-contact measurements of flow parameters, which do not affect the formation of flow in the near-wall zone, the processes of interaction between the main and cooling air, which increases the reliability of the experimental results.
The main components of the stand and research objects were manufactured using additive technologies. The use of additive technologies made it possible to reduce the time spent on preparing experiments, as well as to reduce the cost of manufacturing the main components of the stand and the models under study with various options for releasing air onto a streamlined surface.
A series of experiments was carried out to assess the influence of the coolant blow-out coefficient, which characterizes the ratio of the pulses of the main and cooling air flows, on the temperature distribution along the cooling surface. For outlets with promising geometry, ranges of values with the maximum positive influence of the blowout coefficient have been determined.
Comparison of experimental data with the results of numerical modeling showed good convergence of the results obtained.
References
2. Цанев С.В., Буров В.Д., Ремезов А.Н. Газотурбинные и парогазовые установки тепловых электростанций. М.: НИУ «МЭИ», 2020.
3. Town J. e. a. State-of-the-art Cooling Technology for a Turbine Rotor Blade // J. Turbomach. 2018. V. 140(7). P. 071007.
4. Rodriguez J. e. a. High Fidelity CHT CFD for Gas Turbine Heat Transfer Application // Proc. I Global Power and Propulsion Forum. Zurich, 2016.
5. Yu Yao, Jing-Zhou Zhang, Li-Ping Wang. Film Cooling on a Gas Turbine Blade Suction Side with Converging Slot-hole // Intern. J. Thermal Sci. 2013. V. 65. Pp. 267—279.
6. Shyam V.S. e. a. Long Hole Film Cooling Dataset for CFD Development Part 1: Infrared Thermography and Thermocouple Surveys Ohio: Glenn Research Center Cleveland, 2013.
7. Bogard D.G., Albert J.E. Measurements of Adiabatic Film and Overall Cooling Effectiveness on a Turbine Vane Pressure Side with a Trench // J. Turbomach. 2012. V. 135(5). P. 051007.
8. Schroeder R.P., Thole A.K. Thermal Field Measurements for a Shaped Hole at Low and High Freestream Turbulence Intensity // Proc. ASME Turbo Expo 2016: Turbomachinery Technical Conf. and Exposition. Seoul, 2016.
9. Anderson J.B., McClintic J.W., Bogard D.G., Dyson T.E., Webster Z.D. Freestream Flow Effects on Film Effectiveness and Heat Transfer Coefficient Augmentation for Compound Angle Shaped Holes // ASME. 2017. No. GT2017-64853.
10. Schroeder R.P., Thole K.A. Adiabatic Effectiveness Measurements for a Baseline Shaped Film Cooling Hole // ASME. 2014. No. GT2014-25992.
11. Qin Y., Li X., Ren J., Jiang H. Effects of Compound Angle on Film Cooling Effectiveness with Different Streamwise Pressure Gradient and Convex Curvature // Intern. J. Heat Mass Transfer. 2015. V. 86. Pp. 482—491.
12. Haydt S., Lynch S., Lewis S.D. The Effect of Area Ratio Change Via Increased Hole Length for Shaped Film Cooling Holes цith Constant Expansion Angles // ASME J. Turbomach. 2017. V. 140(5). P. 051002.
13. Haydt S., Lynch S. Cooling Effectiveness for a Shaped Film Cooling Hole at a Range of Compound Angles // ASME J. Turbomach. 2019. V. 141. P. 041005-14.
14. Горелов Ю.Г., Ананьев В.В. ЗD-исследования конвективного и конвективно-пленочного охлаждения трактовых полок сопловых блоков турбины высокого давления // Известия высших учебных заведений. Серия «Авиационная техника». 2018. № 3. С. 126—132.
15. Грибин В.Г., Макаров А.Ю., Андрианов Д.М. Экспериментальное исследование формирования охлаждающей завесы на лопатках газовой турбины» // Енисейская теплофизика: Тез. докл. I Всерос. науч. конф. с междунар. участием. Красноярск, 2023. С. 32—34.
16. Magerramova L., Kinzburskiy V., Vasilyev B. Novel Designs of Turbine Blades for Additive Manufacturing // Proc. ASME Turbo Expo 2016: Turbine Technical Conf. and Exposition. Seoul, 2016.
17. Downs J.P., Landis K.K. Turbine Cooling Systems Design Past, Present and Future // Proc. ASME Turbo Expo: Power for Land, Sea and Air. Orlando, 2009.
---
Для цитирования: Грибин В.Г., Макаров А.Ю., Попов В.В., Андрианов Д.М., Тищенко В.А., Тищенко А.А. Методика экспериментального исследования формирования заградительной завесы при пленочном охлаждении деталей горячего тракта газовой турбины // Вестник МЭИ. 2024. № 4. С. 125—132. DOI: 10.24160/1993-6982-2024-4-125-132
---
Конфликт интересов: авторы заявляют об отсутствии конфликта интересов
#
1. Satoshi Hada, Keizo Tsukagoshi, Junchiro Masada, Eisaku Ito. World's First 1,600°C J-series Gas Turbine. Mitsubishi Heavy Industries Technical Rev. 2012;49(1):19—24.
2. Tsanev S.V., Burov V.D., Remezov A.N. Gazoturbinnye i Parogazovye Ustanovki Teplovykh Elektrostantsiy. M.: NIU «MEI», 2020. (in Russian).
3. Town J. e. a. State-of-the-art Cooling Technology for a Turbine Rotor Blade. J. Turbomach. 2018;140(7):071007.
4. Rodriguez J. e. a. High Fidelity CHT CFD for Gas Turbine Heat Transfer Application. Proc. I Global Power and Propulsion Forum, Zurich, 2016.
5. Yu Yao, Jing-Zhou Zhang, Li-Ping Wang. Film Cooling on a Gas Turbine Blade Suction Side with Converging Slot-hole. Intern. J. Thermal Sci. 2013;65:267—279.
6. Shyam V.S. e. a. Long Hole Film Cooling Dataset for CFD Development Part 1: Infrared Thermography and Thermocouple Surveys Ohio: Glenn Research Center Cleveland, 2013.
7. Bogard D.G., Albert J.E. Measurements of Adiabatic Film and Overall Cooling Effectiveness on a Turbine Vane Pressure Side with a Trench. J. Turbomach. 2012;135(5):051007.
8. Schroeder R.P., Thole A.K. Thermal Field Measurements for a Shaped Hole at Low and High Freestream Turbulence Intensity. Proc. ASME Turbo Expo 2016: Turbomachinery Technical Conf. and Exposition. Seoul, 2016.
9. Anderson J.B., McClintic J.W., Bogard D.G., Dyson T.E., Webster Z.D. Freestream Flow Effects on Film Effectiveness and Heat Transfer Coefficient Augmentation for Compound Angle Shaped Holes. ASME. 2017;GT2017-64853.
10. Schroeder R.P., Thole K.A. Adiabatic Effectiveness Measurements for a Baseline Shaped Film Cooling Hole. ASME. 2014;GT2014-25992.
11. Qin Y., Li X., Ren J., Jiang H. Effects of Compound Angle on Film Cooling Effectiveness with Different Streamwise Pressure Gradient and Convex Curvature. Intern. J. Heat Mass Transfer. 2015;86:482—491.
12. Haydt S., Lynch S., Lewis S.D. The Effect of Area Ratio Change Via Increased Hole Length for Shaped Film Cooling Holes цith Constant Expansion Angles. ASME J. Turbomach. 2017;140(5). P. 051002.
13. Haydt S., Lynch S. Cooling Effectiveness for a Shaped Film Cooling Hole at a Range of Compound Angles. ASME J. Turbomach. 2019;141:041005-14.
14. Gorelov Yu.G., Anan'ev V.V. ZD-issledovaniya Konvektivnogo i Konvektivno-plenochnogo Okhlazhdeniya Traktovykh Polok Soplovykh Blokov Turbiny Vysokogo Davleniya. Izvestiya Vysshikh Uchebnykh Zavedeniy. Seriya «Aviatsionnaya Tekhnika». 2018;3:126—132. (in Russian).
15. Gribin V.G., Makarov A.Yu., Andrianov D.M. Eksperimental'noe Issledovanie Formirovaniya Okhlazhdayushchey Zavesy na Lopatkakh Gazovoy Turbiny». Eniseyskaya Teplofizika: Tez. Dokl. I Vseros. Nauch. Konf. s Mezhdunar. Uchastiem. Krasnoyarsk, 2023:32—34. (in Russian).
16. Magerramova L., Kinzburskiy V., Vasilyev B. Novel Designs of Turbine Blades for Additive Manufacturing. Proc. ASME Turbo Expo 2016: Turbine Technical Conf. and Exposition. Seoul, 2016.
17. Downs J.P., Landis K.K. Turbine Cooling Systems Design Past, Present and Future. Proc. ASME Turbo Expo: Power for Land, Sea and Air. Orlando, 2009
---
For citation: Gribin V.G., Makarov A.Yu., Popov V.V., Andrianov D.M., Tishchenko V.A., Tishchenko A.A. Methodology for Experi-mental Study of the Formation of a Barrier Curtain During Film Cooling of Parts of the Hot Path of a Gas Turbine. Bulletin of MPEI. 2024;4:125—132. (in Russian). DOI: 10.24160/1993-6982-2024-4-125-132
---
Conflict of interests: the authors declare no conflict of interest

