Method of Calculating a Phase Separator with Direct Capillary Channels for the Vapor-liquid Phase Separation of Superfluid Helium
DOI:
https://doi.org/10.24160/1993-6982-2024-4-133-142Keywords:
helium-II, phase separator, capillaries, heat and mass transfer, phase interface, weightlessnessAbstract
The paper deals with the method of calculating a phase separator for the vapor-liquid phase separation of superfluid helium under weightlessness conditions. In this case, instead of the usual for passive phase separator metal porous plug with channels of complex shape, it is proposed to use a plug with straight capillary channels. The problem of the study is calculation of the superfluid helium flow rate at which the straight capillaries penetrating the plug remain filled, i.e., the position of the liquid-vapor interface in the capillaries does not change. The hydrodynamics of He-II and heat transfer in He-II are described by the two-fluid model of L.D. Landau. The analysis of processes in the vapor is carried out on the basis of the molecular-kinetic theory methods. The difference between the temperature of the superfluid helium in the vessel and the temperature of the vapor outside the vessel, which provides the required flow rate of the superfluid, is determined.
References
2. Jahromi A.E., Miller F.K. Modeling, Development, and Experimental Validation of a Joule–Thompson Superfluid Refrigerator Using a Pulse Tube Cryocooler // Cryogenics. 2014. V. 61. Pp. 15—24.
3. Dolzhikov A., Gorodnov I., Borisov N., Usov Yu. A Dilution Cryostat for Experiments with the Polarized Target // AIP Conf. Proc. 2019. V. 2163. P. 080003.
4. Putselyk S. Application of Sub-cooled Superfluid Helium for Cavity Cooling at Linac-based Free Electron Lasers, Energy Recovery and Proton Linacs // IOP Conf. Series: Materials Sci. and Eng. 2020. V. 755. P. 012098.
5. Zhang X. e. a. Development of a Superconducting Magnet System with Zero Liquid Helium Boil-off // J. Superconductivity and Novel Magnetism. 2014. V. 27. Pp. 1027—1030.
6. Urbach A.R., Vorreiter J., Mason P. Design of a Superfluid Helium Dewar for the IRAS // Telescope Proc. 7th Intern. Cryog. Engn. Conf. London: IPC Sci. and Technol. Press. 1978. Pp. 126—133.
7. Schotte U., Denner H. The Mechanism Governing Phase Separation of Helium II by Means of Narrow Channels // Proc. ICEC-8. 1980. Pp. 27—31.
8. Nakano A., Petrac D., Paine C. He II Liquid/vapor Phase Separator for Large Dynamic Range Operation // Cryogenics. 1996. V. 36(10). Pp. 823—828.
9. Yuan S.W.K., Urbach A.R., Volz S.M., Lee J.H. Vapor-liquid Phase Separation of He-II // Cryogenices. 1998. V. 38(9). Pp. 921—925.
10. Nakano A. e. a. Investigation of Large Dynamic Range Helium II Liquid/vapor Phase Separator for SIRTF // Cryogenics. 1999. V. 39(5). Pp. 471—479.
11. Xingen Yu., Qing Li, Qiang Li, Zhengyu Li. Flow Rate of He II Liquid-vapor Phase Separator // J. Thermal Sci. 2005. V. 14. Pp. 69—75.
12. Yuichiro Ezoe e. a. Porous Plug Phase Separator and Superfluid Film Flow Suppression System for the Soft X-Ray Spectrometer Onboard Hitomi // J. Astronomical Telescopes, Instruments, and Systems. 2017. V. 4(1). P. 011203.
13. Maekawa R., Baudouy B. Heat Transfer through Porous Media in the Counterflow Regime // Adv. Cryog. Eng. 2004. V. 41. Pp. 983—990.
14. Baudouy B. e. a. Heat Transfer through Porous Media in Static Superfluid Helium, Adv // Cryog. Eng. 2006. V. 51. Pp. 409—416.
15. Dalban-Canassy M., Van Sciver S.W. Steady Counterflow He II Heat Transfer Through Porous Media // Adv. Cryog. Eng. 2010. V. 55. Pp. 1327—1334.
16. Van Sciver S.W. Helium Cryogenics: Second Edition. N.-Y.: Springer Sci. & Business Media, 2012.
17. Lee Jeffery M. Superfluid Helium II Liquid-Vapor Phase Separation: Technology Assessment. NASA Techn. Memorandum. Moffett Field: Ames Research Center, 1984.
18. Королев П.В., Крюков А.П. Движение сверхтекучего гелия в капилляре с паром при наличии продольного теплового потока // Вестник МЭИ. 2002. № 1. С. 43—46.
19. Муратова Т.М., Лабунцов Д.А. Кинетический анализ процессов испарения и конденсации // Теплофизика высоких температур. 1969. Т. 7. № 5. С. 959—976.
20. Ландау Л.Д, Лифшиц Е.М. Гидродинамика. Серия «Теоретическая физика». Т. 6. М.: Наука, 1988.
21. Халатников И.М. Теория сверхтекучести. М.: Наука, 1971.
22. Есельсон Б.Н., Григорьев В.Н., Иванцов В.Г., Рудавский Э.Я. Свойства жидкого и твердого гелия. М.: Изд-во стандартов, 1978.
---
Для цитирования: Королев П.В., Крюков А.П. Mетодика расчета фазового сепаратора с прямыми капиллярными каналами для разделения сверхтекучего гелия и его паров // Вестник МЭИ. 2024. № 4. С. 133—142. DOI: 10.24160/1993-6982-2024-4-133-142
---
Конфликт интересов: авторы заявляют об отсутствии конфликта интересов
#
1. Lebrun Ph. Cryogenics for High-energy Particle Accelerators: Highlights from the First Fifty Years. IOP Conf. Series: Materials Sci. and Eng. 2017;171:012001.
2. Jahromi A.E., Miller F.K. Modeling, Development, and Experimental Validation of a Joule–Thompson Superfluid Refrigerator Using a Pulse Tube Cryocooler. Cryogenics. 2014;61:15—24.
3. Dolzhikov A., Gorodnov I., Borisov N., Usov Yu. A Dilution Cryostat for Experiments with the Polarized Target. AIP Conf. Proc. 2019;2163:080003.
4. Putselyk S. Application of Sub-cooled Superfluid Helium for Cavity Cooling at Linac-based Free Electron Lasers, Energy Recovery and Proton Linacs. IOP Conf. Series: Materials Sci. and Eng. 2020;755:012098.
5. Zhang X. e. a. Development of a Superconducting Magnet System with Zero Liquid Helium Boil-off. J. Superconductivity and Novel Magnetism. 2014;27:1027—1030.
6. Urbach A.R., Vorreiter J., Mason P. Design of a Superfluid Helium Dewar for the IRAS. Telescope Proc. 7th Intern. Cryog. Engn. Conf. London: IPC Sci. and Technol. Press. 1978:126—133.
7. Schotte U., Denner H. The Mechanism Governing Phase Separation of Helium II by Means of Narrow Channels. Proc. ICEC-8. 1980:27—31.
8. Nakano A., Petrac D., Paine C. He II Liquid/vapor Phase Separator for Large Dynamic Range Operation. Cryogenics. 1996;36(10):823—828.
9. Yuan S.W.K., Urbach A.R., Volz S.M., Lee J.H. Vapor-liquid Phase Separation of He-II. Cryogenices. 1998;38(9):921—925.
10. Nakano A. e. a. Investigation of Large Dynamic Range Helium II Liquid/vapor Phase Separator for SIRTF. Cryogenics. 1999;39(5):471—479.
11. Xingen Yu., Qing Li, Qiang Li, Zhengyu Li. Flow Rate of He II Liquid-vapor Phase Separator. J. Thermal Sci. 2005;14:69—75.
12. Yuichiro Ezoe e. a. Porous Plug Phase Separator and Superfluid Film Flow Suppression System for the Soft X-Ray Spectrometer Onboard Hitomi. J. Astronomical Telescopes, Instruments, and Systems. 2017;4(1):011203.
13. Maekawa R., Baudouy B. Heat Transfer through Porous Media in the Counterflow Regime. Adv. Cryog. Eng. 2004;41:983—990.
14. Baudouy B. e. a. Heat Transfer through Porous Media in Static Superfluid Helium, Adv. Cryog. Eng. 2006;51:409—416.
15. Dalban-Canassy M., Van Sciver S.W. Steady Counterflow He II Heat Transfer Through Porous Media. Adv. Cryog. Eng. 2010;55:1327—1334.
16. Van Sciver S.W. Helium Cryogenics: Second Edition. N.-Y.: Springer Sci. & Business Media, 2012.
17. Lee Jeffery M. Superfluid Helium II Liquid-Vapor Phase Separation: Technology Assessment. NASA Techn. Memorandum. Moffett Field: Ames Research Center, 1984.
18. Korolev P.V., Kryukov A.P. Dvizhenie Sverkhtekuchego Geliya v Kapillyare s Parom pri Nalichii Prodol'nogo Teplovogo Potoka. Vestnik MEI. 2002;1:43—46. (in Russian).
19. Muratova T.M., Labuntsov D.A. Kineticheskiy Analiz Protsessov Ispareniya i Kondensatsii. Teplofizika Vysokikh Temperatur. 1969;7;5:959—976. (in Russian).
20. Landau L.D, Lifshits E.M. Gidrodinamika. Seriya «Teoreticheskaya Fizika». T. 6. M.: Nauka, 1988. (in Russian).
21. Khalatnikov I.M. Teoriya Sverkhtekuchesti. M.: Nauka, 1971. (in Russian).
22. Esel'son B.N., Grigor'ev V.N., Ivantsov V.G., Rudavskiy E.Ya. Svoystva Zhidkogo i Tverdogo Geliya. M.: Izd-vo Standartov, 1978. (in Russian)
---
For citation: Korolyov P.V., Kryukov A.P. Method of Calculating a Phase Separator with Direct Capillary Channels for the Vapor-liquid Phase Separation of Superfluid Helium. Bulletin of MPEI. 2024;4:133—142. (in Russian). DOI: 10.24160/1993-6982-2024-4-133-142
---
Conflict of interests: the authors declare no conflict of interest

