Control of Current in a Six-phase Traction Motor with Open-end Windings in Case of a Phase Open-circuit Fault

Authors

  • Евгений [Evgeniy] Олегович [O.] Столяров [Stolyarov]
  • Дмитрий [Dmitriy] Иванович [I.] Алямкин [Alyamkin]
  • Али [Ali] Юсеф [Yousef]
  • Егор [Egor] Сергеевич [S.] Кулик [Kulik]
  • Максим [Maksim] Михайлович [M.] Лашкевич [Lashkevich]
  • Алексей [Aleksey] Сергеевич [S.] Анучин [Anuchin]
  • Вадим [Vadim] Николаевич [N.] Остриров [Ostrirov]

DOI:

https://doi.org/10.24160/1993-6982-2024-5-11-17

Keywords:

electric aircraft propulsion system, fault-tolerant control, multiphase motor, six-phase motor, motor with open-end windings, phase and circuit open-circuit faults

Abstract

The electric propulsion system of an aircraft or unmanned aerial vehicle must meet high safety standards and provide fault tolerant operation in case of partial failures. This requirement is met by means of both hardware and a control system. An open circuit fault in one phase is the most common fault, during which it is still possible to continue producing the same torque by changing the current settings in the other phases. The article considers a six-phase permanent magnet traction motor with open-end windings and proposes a method for forming a reference current vector using the phases remained in operation. It is shown that a 23.6% increase in current amplitude is required, while a mere 20% increase in currents produces the same average torque per revolution, but with 20% torque ripple. Since torque ripple can cause mechanical resonance and propeller failure, the proposed method is feasible even at somewhat higher ohmic losses. The presented method is suitable for use as part of an aircraft propulsion control system.

Author Biographies

Евгений [Evgeniy] Олегович [O.] Столяров [Stolyarov]

Ph.D.-student of Automated Electric Drive Dept., NRU MPEI, e-mail: StoliarovYO@mpei.ru

Дмитрий [Dmitriy] Иванович [I.] Алямкин [Alyamkin]

Ph.D. (Techn.), Engineer of Automated Electric Drive Dept., NRU MPEI, e-mail: AliamkinDI@mpei.ru

Али [Ali] Юсеф [Yousef]

Ph.D.-student of Automated Electric Drive Dept., NRU MPEI, e-mail: joseph86.ali@gmail.com

Егор [Egor] Сергеевич [S.] Кулик [Kulik]

Ph.D. (Techn.), Assistant of Automated Electric Drive Dept., NRU MPEI, e-mail: KulikYS@mpei.ru

Максим [Maksim] Михайлович [M.] Лашкевич [Lashkevich]

Ph.D. (Techn.), Engineer of Automated Electric Drive Dept., NRU MPEI, e-mail: LashkevichMM@mpei.ru 

Алексей [Aleksey] Сергеевич [S.] Анучин [Anuchin]

Dr.Sci. (Techn.), Head of Automated Electric Drive Dept., NRU MPEI, e-mail: AnuchinAS@mpei.ru

Вадим [Vadim] Николаевич [N.] Остриров [Ostrirov]

Dr.Sci. (Techn.), Professor of Automated Electric Drive Dept., NRU MPEI, e-mail: OstrirovVN@mpei.ru

References

1. Bolvashenkov I. e. a. Fault Tolerant Multi-phase Permanent Magnet Synchronous Motor for the More Electric Aircraft // Fault-tolerant Traction Electric Drives: Reliability, Topologies and Components Design. N.-Y.: Springer, 2020. Pp. 73—92.
2. Bolam R.C., Vagapov Y., Anuchin A. A Review of Electrical Motor Topologies for Aircraft Propulsion // Proc. 55th Intern. Universities Power Eng. Conf. 2020. Pp. 1—6.
3. Lei J., Feng G., Liu C., Xia Y., Hua W. A Dual Inverter Topology with Quasi-isolated Power Supplies for More Electric Aircraft Applications // IEEE Trans. Power Electron. 2022. V. 38(3). Pp. 2889—2895.
4. Welchko B.A., Lipo T.A., Jahns T.M., Schulz S.E. Fault Tolerant Three-phase AC Motor Drive Topologies: a Comparison of Features, Cost, and Limitations // IEEE Trans. Power Electron. 2004. V. 19(4). Pp. 1108—1116.
5. Hu W., Ruan C., Nian H., Sun D. Simplified Modulation Scheme for Open-end Winding PMSM System with Common DC Bus Under Open-phase Fault Based on Circulating Current Suppression // IEEE Trans. Power Electron. 2019. V. 35(1). Pp. 10—14.
6. Anuchin A. e. a. Increasing Output Torque by Means of Space Vector Current Regulation in an Open-end Winding AC Electrical Machine // Proc. XI Intern. Conf. Electrical Power Drive Systems. 2020. Pp. 1—4.
7. Darijevic M., Jones M., Dordevic O., Levi E. Decoupled PWM Control of a Dual-inverter Four-level Five-phase Drive // IEEE Trans. Power Electron. 2016. V. 32(5). Pp. 3719—3730.
8. Parsa L. On Advantages of Multi-phase Machines // Proc. XXXI Annual Conf. IEEE Industrial Electronics Soc. 2005. Pp. 1—6.
9. Frikha M.A. e. a. Multiphase Motors and Drive Systems for Electric Vehicle Powertrains: State of the Art Analysis and Future Trends // Energies. 2023. V. 16(2). P. 45.
10. Stolyarov E., Anuchin A., Ali Y., Lashkevich M., Aliamkin D., Zharkov A. Universal Model of a Multiphase Permanent Magnet Synchronous Motor // Proc. I IEEE Industrial Electronics Soc. Annual On-line Conf. 2022. Pp. 1—5.
11. Zhang L., Fan Y., Lorenz R.D., Nied A., Cheng M. Design and Comparison of Three-phase and Five-phase FTFSCW-IPM Motor Open-end Winding Drive Systems for Electric Vehicles Applications // IEEE Trans. Veh. Technol. 2017. V. 67(1). Pp. 385—396.
12. Nguyen N.K., Meinguet F., Semail E., Kestelyn X. Fault-tolerant Operation of an Open-end Winding Five-phase PMSM Drive with Short-circuit Inverter Fault // IEEE Trans. Ind. Electron. 2015. V. 63(1). Pp. 595—605.
13. Perpiñà X. e. a. Over-current Turn-off Failure in High Voltage IGBT Modules under Clamped Inductive Load // Proc. XIII European Conf. Power Electronics and Appl. 2009. Pp. 1—10.
14. Errabelli R.R., Mutschler P. Fault-tolerant Voltage Source Inverter for Permanent Magnet Drives // IEEE Trans. Power Electron. 2011. V. 27(2). Pp. 500—508.
15. Zhao J., Gao X., Li B., Liu X., Guan X. Open-phase Fault Tolerance Techniques of Five-phase Dual-rotor Permanent Magnet Synchronous Motor // Energies. 2015. V. 8(11). Pp. 12810—12838.
16. Yang S., Bryant A., Mawby P., Xiang D., Ran L., Tavner P. An Industry-based Survey of Reliability in Power Electronic Converters // IEEE Trans. Ind. Appl. 2011. V. 47(3). Pp. 1441—1451.
17. Cheng M., Hang J., Zhang J. Overview of Fault Diagnosis Theory and Method for Permanent Magnet Machine // Chinese J. Electr. Eng. 2015. V. 1(1). Pp. 21—36.
18. Gonzalez-Prieto I., Duran M.J., Rios-Garcia N., Barrero F., Martin C. Open-switch Fault Detection in Five-phase Induction Motor Drives Using Model Predictive Control // IEEE Trans. Ind. Electron. 2017. V. 65(4). Pp. 3045—3055.
19. Lin X. e. a. Direct Torque Control for Three-phase Open-end Winding PMSM with Common DC Bus Based on Duty Ratio Modulation // IEEE Trans. Power Electron. 2019. V. 35(4). Pp. 4216—4232.
20. Mekasser M., Gao Q., Xu C. Common Mode Voltage Elimination in Dual‐inverter‐fed Six‐phase open‐end Winding PMSM Drives with a Single DC Supply // J. Eng. 2019. V. 17. Pp. 3598—3602
---
Для цитирования: Столяров Е.О., Алямкин Д.И., Юсеф Али, Кулик Е.С., Лашкевич М.М., Анучин А.С., Остриров В.Н. Регулирование тока в шестифазном тяговом двигателе с расщеплёнными обмотками при обрыве фазы // Вестник МЭИ. 2024. № 5. С. 11—17. DOI: 10.24160/1993-6982-2024-5-11-17
---
Конфликт интересов: авторы заявляют об отсутствии конфликта интересов
#
1. Bolvashenkov I. e. a. Fault Tolerant Multi-phase Permanent Magnet Synchronous Motor for the More Electric Aircraft. Fault-tolerant Traction Electric Drives: Reliability, Topologies and Components Design. N.-Y.: Springer, 2020:73—92.
2. Bolam R.C., Vagapov Y., Anuchin A. A Review of Electrical Motor Topologies for Aircraft Propulsion. Proc. 55th Intern. Universities Power Eng. Conf. 2020:1—6.
3. Lei J., Feng G., Liu C., Xia Y., Hua W. A Dual Inverter Topology with Quasi-isolated Power Supplies for More Electric Aircraft Applications. IEEE Trans. Power Electron. 2022;38(3):2889—2895.
4. Welchko B.A., Lipo T.A., Jahns T.M., Schulz S.E. Fault Tolerant Three-phase AC Motor Drive Topologies: a Comparison of Features, Cost, and Limitations. IEEE Trans. Power Electron. 2004;19(4):1108—1116.
5. Hu W., Ruan C., Nian H., Sun D. Simplified Modulation Scheme for Open-end Winding PMSM System with Common DC Bus Under Open-phase Fault Based on Circulating Current Suppression. IEEE Trans. Power Electron. 2019;35(1):10—14.
6. Anuchin A. e. a. Increasing Output Torque by Means of Space Vector Current Regulation in an Open-end Winding AC Electrical Machine. Proc. XI Intern. Conf. Electrical Power Drive Systems. 2020:1—4.
7. Darijevic M., Jones M., Dordevic O., Levi E. Decoupled PWM Control of a Dual-inverter Four-level Five-phase Drive. IEEE Trans. Power Electron. 2016;32(5):3719—3730.
8. Parsa L. On Advantages of Multi-phase Machines. Proc. XXXI Annual Conf. IEEE Industrial Electronics Soc. 2005:1—6.
9. Frikha M.A. e. a. Multiphase Motors and Drive Systems for Electric Vehicle Powertrains: State of the Art Analysis and Future Trends. Energies. 2023;16(2). P. 45.
10. Stolyarov E., Anuchin A., Ali Y., Lashkevich M., Aliamkin D., Zharkov A. Universal Model of a Multiphase Permanent Magnet Synchronous Motor. Proc. I IEEE Industrial Electronics Soc. Annual On-line Conf. 2022:1—5.
11. Zhang L., Fan Y., Lorenz R.D., Nied A., Cheng M. Design and Comparison of Three-phase and Five-phase FTFSCW-IPM Motor Open-end Winding Drive Systems for Electric Vehicles Applications. IEEE Trans. Veh. Technol. 2017;67(1):385—396.
12. Nguyen N.K., Meinguet F., Semail E., Kestelyn X. Fault-tolerant Operation of an Open-end Winding Five-phase PMSM Drive with Short-circuit Inverter Fault. IEEE Trans. Ind. Electron. 2015;63(1):595—605.
13. Perpiñà X. e. a. Over-current Turn-off Failure in High Voltage IGBT Modules under Clamped Inductive Load. Proc. XIII European Conf. Power Electronics and Appl. 2009:1—10.
14. Errabelli R.R., Mutschler P. Fault-tolerant Voltage Source Inverter for Permanent Magnet Drives. IEEE Trans. Power Electron. 2011;27(2):500—508.
15. Zhao J., Gao X., Li B., Liu X., Guan X. Open-phase Fault Tolerance Techniques of Five-phase Dual-rotor Permanent Magnet Synchronous Motor. Energies. 2015;8(11):12810—12838.
16. Yang S., Bryant A., Mawby P., Xiang D., Ran L., Tavner P. An Industry-based Survey of Reliability in Power Electronic Converters. IEEE Trans. Ind. Appl. 2011;47(3):1441—1451.
17. Cheng M., Hang J., Zhang J. Overview of Fault Diagnosis Theory and Method for Permanent Magnet Machine. Chinese J. Electr. Eng. 2015;1(1):21—36.
18. Gonzalez-Prieto I., Duran M.J., Rios-Garcia N., Barrero F., Martin C. Open-switch Fault Detection in Five-phase Induction Motor Drives Using Model Predictive Control. IEEE Trans. Ind. Electron. 2017;65(4):3045—3055.
19. Lin X. e. a. Direct Torque Control for Three-phase Open-end Winding PMSM with Common DC Bus Based on Duty Ratio Modulation. IEEE Trans. Power Electron. 2019;35(4):4216—4232.
20. Mekasser M., Gao Q., Xu C. Common Mode Voltage Elimination in Dual‐inverter‐fed Six‐phase open‐end Winding PMSM Drives with a Single DC Supply. J. Eng. 2019;17:3598—3602
---
For citation: Stolyarov E.O., Alyamkin D.I., Yousef Ali, Kulik E.S., Lashkevich M.M., Anuchin A.S., Ostrirov V.N. Control of Current in a Six-phase Traction Motor with Open-end Windings in Case of a Phase Open-circuit Fault. Bulletin of MPEI. 2024;5:11—17. (in Russian). DOI: 10.24160/1993-6982-2024-5-11-17
---
Conflict of interests: the authors declare no conflict of interest

Published

2024-06-18

Issue

Section

Electrical Complexes and Systems (2.4.2)