Current State and Prospects of Handling Graphite from Uranium-graphite Reactors
DOI:
https://doi.org/10.24160/1993-6982-2024-5-112-122Keywords:
reactor graphite, decommissioning, uranium-graphite reactors, graphite dismantling, radioactive carbonAbstract
The aim of the study is to collect information on the current state with graphite from uranium-graphite reactors worldwide. Technical, organizational, economic, and social aspects of this issue are examined. Publications on the most promising graphite handling methods were studied, both in terms of determining the graphite radiation and mechanical characteristics and in terms of its further processing. Publications reflecting factors strongly influencing the investigated methodologies in the contemporary Western society, such as public opinion, economics, and the safety of all processes, have been selected.
The article compiles and analyzes information on the current state of most components of the radioactive graphite handling process – its classification, dismantling methods, processing and packaging methods, and locations for final disposal. Statistics on the volumes and the current state of graphite in all countries in which there are such reactors is generalized, and current regulations and government-approved methods for handling graphite in these countries are listed. Most of the currently proposed methods for determining the physical condition and radiation characteristics of graphite have been examined, along with its processing in terms of practical industrial-scale applications. Information on deep geological repositories worldwide has been analyzed, and available information on implemented projects for decommissioning uranium-graphite reactors has been reviewed.
A new perspective on the influence of the potential release of the most significant radionuclide in reactor graphite - 14С on its natural abundance in the natural environment is considered.
The costs of the so-called "base" and "carbon capture and sequestration" methods in the United Kingdom along with the burial payment rates for deep geological repositories for intermediate- and high-level radioactive waste in Russia have been compared with each other.
The conclusion is drawn that currently there are no universal and turnkey solutions for safe and economically feasible methods for complete dismantling and disposal of reactor graphite. On the other hand, the accomplished study made it possible to identify perhaps those specific lines in which the future research and calculations should only be conducted.
References
2. Colgan P.A. e. a. Report of the RPII Visit to BNFL Sellafield. Dublin: Radiological Protection Institute of Ireland, 2014.
3. NEA Nuclear Innovation 2050 [Электрон. ресурс] https://www.oecd-nea.org/upload/docs/application/pdf/2020-07/04pieraccinini2050decommissioning.pdf (дата обращения 12.01.2024).
4. World Nuclear Association [Офиц. сайт] https://world-nuclear.org/ (дата обращения 12.01.2024).
5. Fisher M. FORT ST. VRAIN Decommissioning Project. Denver: Public Service Company of Colorado, 1998.
6. Halliwell C. The Windscale Advanced Gas Cooled Reactor (WAGR) Decommissioning Project. A Close Out Report for WAGR Decommissioning Campaigns 1 to 10-12474. Risley: Sellafield Ltd, 2012.
7. Kirby B. Brookhaven Graphite Research Reactor (BGRR) D&D Project. San Jose: S.A. Technology (SAT) Inc., 2011.
8. Report on the Accident at Windscale No. 1 Pile on 10 October 1957 // J. Radiological Protection. 2017. V. 37(3). Pp. 780—796.
9. Review of Baseline Assumptions Regarding Disposal of Core Graphite in a Geological Disposal Facility // NDA Technical Note. 2016. No. 16495644.
10. Higher Activity Waste — The Long-term Management of Reactor Core Graphite Waste (Gate A) [Электрон. ресурс] https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/457088/The_long-term_management_of_reactor_core_graphite_credible_options__Gate_A_.pdf (дата обращения 12.01.2024).
11. Geological Disposal Overview of International Siting Processes [Электрон. ресурс] https://assets.publishing.service.gov.uk/media/5a815d7ee5274a2e87dbd3c0/Overview_of_international_siting_processes_September_2013.pdf (дата обращения 12.01.2024).
12. Classification of Radioactive Waste: Safety Guide. Vienna: International Atomic Energy Agency, 2009.
13. Processing of Irradiated Graphite to Meet Acceptance Criteria for Waste Disposal. Vienna: International Atomic Energy Agency, 2016.
14. Characterization, Treatment and Conditioning of Radioactive Graphite from Decommissioning of Nuclear Reactors. Vienna: International Atomic Energy Agency, 2006.
15. Игналинская АЭС [Офиц. сайт] https://www.iae.lt/ru (дата обращения 12.01.2024).
16. Poškas G. Current Status of Decommissioning in Lithuania. Kaunas: Lithuanian Energy Institute Nuclear Engineering Laboratory, 2017.
17. Plukienea R., Anciusa D., Plukisa A. Current Status of the Radiological Characterization of the Irradiated Graphite from the RBMK-1500 Reactor in Lithuania. Vienna: International Atomic Energy Agency, 2010.
18. Remeikisa V. e. a. Characterization of RBMK-1500 Graphite: a Method to Identify the Neutron Activation and Surface Contamination Terms // Nuclear Eng. and Design. 2020. V. 361. P. 110501.
19. Goodwin J. e. a. From Core to Capture: Graphite Management by Gasification and Carbon Capture & Storage. N.-Y., 2016.
20. Progress in radioactive graphite waste management. Vienna: International Atomic Energy Agency, 2010.
21. Bushuev A.V. e. a. Radionuclide Characterization of Graphite Stacks from Plutonium Production Reactors of Siberian Group of Chemical Enterprises [Электрон. ресурс] https://www.researchgate.net/publication/237331904_RADIONUCLIDE_CHARACTERIZATION_OF_GRAPHITE_STACKS_FROM_PLUTONIUM_PRODUCTION_REACTORS_OF_THE_SIBERIAN_GROUP_OF_CHEMICAL_ENTERPRISES (дата обращения 12.01.2024).
22. White I.F. e. a. Assessment of Management Modes for Graphite from Reactor Decommissioning // CEC Rep. (Nuclear Sci. and Technol.), 1984.
23. ISO 6184-1:1985. Explosion Protection Systems — Pt. 1: Determination of Explosion Indices of Combustible Dusts in Air.
24. Schweitzer D.G. e. a. A Safety Assessment of the Use of Graphite in Nuclear Reactors Licensed by the US Nuclear Regulatory Commission. Washington: Brookhaven National Laboratory, 1987.
25. Richards M.B., Combustibility of High-purity Nuclear-grade Graphite // Proc. XXII Biennial Conf. Carbon. San Diego, 1995. Pp. 598—599.
26. Wickham A., Rahmani L. Graphite Dust Explosibility in Decommissioning: a Demonstration of Minimal Risk. Vienna: International Atomic Energy Agency, 2010.
27. Field P. Dust Explosions // Handbook of Powder Technology. N.-Y.: Elsevier, 1982.
28. Guiroy J.J. Graphite Waste Incineration in a Fluidised Bed, Graphite Moderator Lifecycle Behaviour // Proc. IAEA Meeting. Bath, 1996.
29. Fairhall G.A. Objectives and Scope of the Joint Funded BNFL/DOE Product Evaluation Development Programme // Rep. DOE/RW/89/050, 1989.
30. Guiroy J.J. Graphite Waste Incineration in a Fluidised Bed. Vienna: International Atomic Energy Agency, 1996.
31. Давыдова Г.Б., Краюшкин А.В., Смирнова А.К. О радиоуглероде в уран-графитовых реакторах НИЦ «Курчатовский институт» // Вопросы атомной науки и техники. Серия «Физика ядерных реакторов». 2022. № 5. С. 85—89.
32. Дорофеев А. Н. и др. К вопросу захоронения реакторного графита // Журнал Радиоактивные отходы. 2019. № 2(7). С. 18—30.
33. Скачек М.А. Обращение с отработавшим ядерным топливом и радиоактивными отходами АЭС. М.: Изд-во МЭИ, 2007.
34. Нечаев А.Ф., Винницкий В.А. Обезвреживание реакторного графита: проблемы и решения // Известия Санкт-Петербургского гос. технолог. института (технического ун-та). 2022. № 61(87). С. 22—26.
35. Чуйко Д.В. Применение имитационного моделирования для демонтажа реакторных установок первой очереди Белоярской АЭС: дис. … канд. техн. наук. М.: НИЦ «Курчатовский институт», 2014
---
Для цитирования: Марич Н., Гольцев А.О. Текущее состояние и перспективы обращения с графитом из уран-графитовых реакторов // Вестник МЭИ. 2024. № 5. С. 112—122. DOI: 10.24160/1993-6982-2024-5-112-122
---
Конфликт интересов: авторы заявляют об отсутствии конфликта интересов
#
1. Characterization, Treatment and Conditioning of Radioactive Graphite from Decommissioning of Nuclear Reactors. Vienna: International Atomic Energy Agency, 2006.
2. Colgan P.A. e. a. Report of the RPII Visit to BNFL Sellafield. Dublin: Radiological Protection Institute of Ireland, 2014.
3. NEA Nuclear Innovation 2050 [Elektron. Resurs] https://www.oecd-nea.org/upload/docs/application/pdf/2020-07/04pieraccinini2050decommissioning.pdf (Data Obrashcheniya 12.01.2024).
4. World Nuclear Association [Ofits. Sayt] https://world-nuclear.org/ (Data Obrashcheniya 12.01.2024).
5. Fisher M. FORT ST. VRAIN Decommissioning Project. Denver: Public Service Company of Colorado, 1998.
6. Halliwell C. The Windscale Advanced Gas Cooled Reactor (WAGR) Decommissioning Project. A Close Out Report for WAGR Decommissioning Campaigns 1 to 10-12474. Risley: Sellafield Ltd, 2012.
7. Kirby B. Brookhaven Graphite Research Reactor (BGRR) D&D Project. San Jose: S.A. Technology (SAT) Inc., 2011.
8. Report on the Accident at Windscale No. 1 Pile on 10 October 1957. J. Radiological Protection. 2017;37(3):780—796.
9. Review of Baseline Assumptions Regarding Disposal of Core Graphite in a Geological Disposal Facility. NDA Technical Note. 2016;16495644.
10. Higher Activity Waste — The Long-term Management of Reactor Core Graphite Waste (Gate A) [Elektron. Resurs] https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/457088/The_long-term_management_of_reactor_core_graphite_credible_options__Gate_A_.pdf (Data Obrashcheniya 12.01.2024).
11. Geological Disposal Overview of International Siting Processes [Elektron. Resurs] https://assets.publishing.service.gov.uk/media/5a815d7ee5274a2e87dbd3c0/Overview_of_international_siting_processes_September_2013.pdf (Data Obrashcheniya 12.01.2024).
12. Classification of Radioactive Waste: Safety Guide. Vienna: International Atomic Energy Agency, 2009.
13. Processing of Irradiated Graphite to Meet Acceptance Criteria for Waste Disposal. Vienna: International Atomic Energy Agency, 2016.
14. Characterization, Treatment and Conditioning of Radioactive Graphite from Decommissioning of Nuclear Reactors. Vienna: International Atomic Energy Agency, 2006.
15. Ignalinskaya AES [Ofits. Sayt] https://www.iae.lt/ru (Data Obrashcheniya 12.01.2024). (in Russian).
16. Poškas G. Current Status of Decommissioning in Lithuania. Kaunas: Lithuanian Energy Institute Nuclear Engineering Laboratory, 2017.
17. Plukienea R., Anciusa D., Plukisa A. Current Status of the Radiological Characterization of the Irradiated Graphite from the RBMK-1500 Reactor in Lithuania. Vienna: International Atomic Energy Agency, 2010.
18. Remeikisa V. e. a. Characterization of RBMK-1500 Graphite: a Method to Identify the Neutron Activation and Surface Contamination Terms. Nuclear Eng. and Design. 2020;361:110501.
19. Goodwin J. e. a. From Core to Capture: Graphite Management by Gasification and Carbon Capture & Storage. N.-Y., 2016.
20. Progress in radioactive graphite waste management. Vienna: International Atomic Energy Agency, 2010.
21. Bushuev A.V. e. a. Radionuclide Characterization of Graphite Stacks from Plutonium Production Reactors of Siberian Group of Chemical Enterprises [Elektron. Resurs] https://www.researchgate.net/publication/237331904_RADIONUCLIDE_CHARACTERIZATION_OF_GRAPHITE_STACKS_FROM_PLUTONIUM_PRODUCTION_REACTORS_OF_THE_SIBERIAN_GROUP_OF_CHEMICAL_ENTERPRISES (Data Obrashcheniya 12.01.2024).
22. White I.F. e. a. Assessment of Management Modes for Graphite from Reactor Decommissioning. CEC Rep. (Nuclear Sci. and Technol.), 1984.
23. ISO 6184-1:1985. Explosion Protection Systems — Pt. 1: Determination of Explosion Indices of Combustible Dusts in Air.
24. Schweitzer D.G. e. a. A Safety Assessment of the Use of Graphite in Nuclear Reactors Licensed by the US Nuclear Regulatory Commission. Washington: Brookhaven National Laboratory, 1987.
25. Richards M.B., Combustibility of High-purity Nuclear-grade Graphite. Proc. XXII Biennial Conf. Carbon. San Diego, 1995:598—599.
26. Wickham A., Rahmani L. Graphite Dust Explosibility in Decommissioning: a Demonstration of Minimal Risk. Vienna: International Atomic Energy Agency, 2010.
27. Field P. Dust Explosions. Handbook of Powder Technology. N.-Y.: Elsevier, 1982.
28. Guiroy J.J. Graphite Waste Incineration in a Fluidised Bed, Graphite Moderator Lifecycle Behaviour. Proc. IAEA Meeting. Bath, 1996.
29. Fairhall G.A. Objectives and Scope of the Joint Funded BNFL/DOE Product Evaluation Development Programme. Rep. DOE/RW/89/050, 1989.
30. Guiroy J.J. Graphite Waste Incineration in a Fluidised Bed. Vienna: International Atomic Energy Agency, 1996.
31. Davydova G.B., Krayushkin A.V., Smirnova A.K. O Radiouglerode V Uran-grafitovykh Reaktorakh NITS «Kurchatovskiy Institut». Voprosy Atomnoy Nauki i Tekhniki. Seriya «Fizika Yadernykh Reaktorov». 2022;5:85—89. (in Russian).
32. Dorofeev A. N. i dr. K Voprosu Zakhoroneniya Reaktornogo Grafita. Zhurnal Radioaktivnye Otkhody. 2019;2(7):18—30. (in Russian).
33. Skachek M.A. Obrashchenie s Otrabotavshim Yadernym Toplivom i Radioaktivnymi Otkhodami AES. M.: Izd-vo MEI, 2007. (in Russian).
34. Nechaev A.F., Vinnitskiy V.A. Obezvrezhivanie Reaktornogo Grafita: Problemy i Resheniya. Izvestiya Sankt-Peterburgskogo Gos. Tekhnolog. Instituta (Tekhnicheskogo Un-ta). 2022;61(87):22—26. (in Russian).
35. Chuyko D.V. Primenenie Imitatsionnogo Modelirovaniya dlya Demontazha Reaktornykh Ustanovok Pervoy Ocheredi Beloyarskoy AES: Dis. … Kand. Tekhn. Nauk. M.: NITS «Kurchatovskiy Institut», 2014. (in Russian)
---
For citation: Marich N., Goltsev A.O. Current State and Prospects of Handling Graphite from Uranium-graphite Reactors. Bulletin of MPEI. 2024;5:112—122. (in Russian). DOI: 10.24160/1993-6982-2024-5-112-122
---
Conflict of interests: the authors declare no conflict of interest

