Sensitivity Analysis for Design Extension Conditions of a VVER-1200 Power Unit
DOI:
https://doi.org/10.24160/1993-6982-2024-5-131-148Keywords:
regulatory bodies, design extension conditions, sensitivity analysis, common-cause failure of programmable I&C systems, correlation coefficientsAbstract
According to the latest requirements of the Russian and international regulatory bodies, the modeling of design extension conditions (DEC) shall be accompanied by a sensitivity analysis of the results to the possible variations in the parameters studied. The sensitivity analysis should yield at its output the extent to which each of the uncertainties influences the parameters studied.
The subject of the study, which was carried out using a commonly adopted approach, is to perform a sensitivity analysis of the DEC “Loss off-site normal operation AC power supply to plant auxiliary equipment (commonly known as NPP LOOP conditions) with a common-cause failure of programmable I&C systems” to check the possibility of applying this approach in analyzing design extension conditions, because previously, analyses of DECs were not accompanied by a sensitivity analysis.
The accomplished sensitivity analysis has yielded the following information:
- values characterizing the spread of the criterion parameters (maximum fuel rod cladding temperature and maximum primary and secondary circuit pressures);
- Spearman’s rank correlation coefficients;
- graphs of density distribution functions and distributions of the calculation results.
A methodology of performing sensitivity analyses for DECs without fuel melting and the tight primary circuit is presented, which makes it possible to fully take into account the requirements of international and Russian regulatory bodies. The methodology can be extended to all designs of VVER reactor plants.
References
2. НП-001—15. Общие положения обеспечения безопасности атомных станций.
3. РБ-166—20. Рекомендации по оценке погрешностей и неопределенностей результатов расчетных анализов безопасности атомных станций.
4. OECD/CSNI Workshop on Best Estimate Methods and Uncertainty Evaluations: Workshop Proc. 2011.
5. Forte A. e. a. Review Study on Uncertainty Methods for Thermal-hydraulic Computer Codes. Luxembourg: Euroatom, 1994.
6. D’Aura F. e. a. Current Status of Methodologies Evaluating the Uncertainty in the Prediction of Thermal-hydraulic Phenomina in Nuclear Reactors // Proc. Intern. Symp. Two-phase Flow Modeling and Experimentation. Rome, 1995.
7. Prosek A., Mavko B. Review of Best Estimate Plus Uncertainty Methods of Thermal-hydraulic Safety Analysis // Intern. Conf. Nuclear Energy for Central Europe. 2003. P. 211.1—211.8.
8. Bucalossi A., Petruzzi A. Role of Best Estimate Plus Uncertainty Methods in Major Nuclear Power Plant Modifications // J. Nuclear Sci. and Technol. 2010. V. 47(8). Pp. 671—683.
9. Best Estimate Safety Analysis for Nuclear Power Plants: Uncertainty Evaluation. Vienna: International Atomic Energy Agency, 2008.
10. Glaeser H. GRS Method for Uncertainty and Sensitivity Evaluation of Code and Applications // Sci. and Technol. Nuclear Installations. 2008. Pp. 1—7.
11. Дэйвид Г. Порядковые статистики. М.: Наука, 1979.
12. Уилкс С. Математическая статистика. М.: Наука, 1967.
13. Бочаров П.П. Печинкин А.В. Теория вероятностей. Математическая статистика. М.: Физматлит, 2005.
14. Кобзарь А.И. Прикладная математическая статистика. М.: Физматлит, 2006.
15. Ikonen T., Tulkki V. The Importance of Input Interactions in the Uncertainty and Sensitivity Analysis of Nuclear Fuel Behavior // Nuclear Eng. and Design. 2014. V. 275. Pp. 229—241.
16. Mohanty S. e. a. History and Value of Uncertainty and Sensitivity Commission and Center for Nuclear Waste Regulatory Analyses. 2011.
17. Hamby D.M. A Comparison of Sensitivity Analysis Techniques // Health Phys. 1995. V. 68(2). Pp. 195—204.
18. BEMUSE Phase III Rep. Uncertainty and Sensitivity Analysis of the LOFT L2-5 Test. 2007.
19. Kloss M. SUSA Version 4.1. Software for Uncertainty and Sensitivity Analyses, User’s Guide and Tutorial. GRS-P-5, Rev. 4. Garching, 2018.
20. Свид-во о регистрации программы для ЭВМ № 2016619262 РФ. ТРАП-КС / Зайцев С.И. и др.
21. Hong I.S., Oh D.Y, Kim I.G. Generic Application of Wilks’ Tolerance Limit Evaluation Approach to Nuclear Safety // OESD/CSNI Workshop on Best Estimate Methods and Uncertainty Evaluations. 2011. Pp. 16—25
---
Для цитирования: Полевой М.А Анализ чувствительности для запроектных аварий энергоблока с ВВЭР-1200 // Вестник МЭИ. 2024. № 5. С. 131—148. DOI: 10.24160/1993-6982-2024-5-131-148
#
1. Specific Safety Guide No. SSG-2 (Rev. 1). Deterministic Safety Analysis for Nuclear Power Plants. Vienna: International Atomic Energy Agency, 2019.
2. NP-001—15. Obshchie Polozheniya Obespecheniya Bezopasnosti Atomnykh Stantsiy. (in Russian).
3. RB-166—20. Rekomendatsii po Otsenke Pogreshnostey i Neopredelennostey Rezul'tatov Raschetnykh Analizov Bezopasnosti Atomnykh Stantsiy. (in Russian).
4. OECD/CSNI Workshop on Best Estimate Methods and Uncertainty Evaluations: Workshop Proc. 2011.
5. Forte A. e. a. Review Study on Uncertainty Methods for Thermal-hydraulic Computer Codes. Luxembourg: Euroatom, 1994.
6. D’Aura F. e. a. Current Status of Methodologies Evaluating the Uncertainty in the Prediction of Thermal-hydraulic Phenomina in Nuclear Reactors. Proc. Intern. Symp. Two-phase Flow Modeling and Experimentation. Rome, 1995.
7. Prosek A., Mavko B. Review of Best Estimate Plus Uncertainty Methods of Thermal-hydraulic Safety Analysis. Intern. Conf. Nuclear Energy for Central Europe. 2003:211.1—211.8.
8. Bucalossi A., Petruzzi A. Role of Best Estimate Plus Uncertainty Methods in Major Nuclear Power Plant Modifications. J. Nuclear Sci. and Technol. 2010;47(8):671—683.
9. Best Estimate Safety Analysis for Nuclear Power Plants: Uncertainty Evaluation. Vienna: International Atomic Energy Agency, 2008.
10. Glaeser H. GRS Method for Uncertainty and Sensitivity Evaluation of Code and Applications. Sci. and Technol. Nuclear Installations. 2008:1—7.
11. Deyvid G. Poryadkovye Statistiki. M.: Nauka, 1979. (in Russian).
12. Uilks S. Matematicheskaya Statistika. M.: Nauka, 1967. (in Russian).
13. Bocharov P.P. Pechinkin A.V. Teoriya Veroyatnostey. Matematicheskaya Statistika. M.: Fizmatlit, 2005. (in Russian).
14. Kobzar' A.I. Prikladnaya Matematicheskaya Statistika. M.: Fizmatlit, 2006. (in Russian).
15. Ikonen T., Tulkki V. The Importance of Input Interactions in the Uncertainty and Sensitivity Analysis of Nuclear Fuel Behavior. Nuclear Eng. and Design. 2014;275:229—241.
16. Mohanty S. e. a. History and Value of Uncertainty and Sensitivity Commission and Center for Nuclear Waste Regulatory Analyses. 2011.
17. Hamby D.M. A Comparison of Sensitivity Analysis Techniques. Health Phys. 1995;68(2):195—204.
18. BEMUSE Phase III Rep. Uncertainty and Sensitivity Analysis of the LOFT L2-5 Test. 2007.
19. Kloss M. SUSA Version 4.1. Software for Uncertainty and Sensitivity Analyses, User’s Guide and Tutorial. GRS-P-5, Rev. 4. Garching, 2018.
20. Svid-vo o Registratsii Programmy dlya EVM № 2016619262 RF. TRAP-KS. Zaytsev S.I. i dr. (in Russian).
21. Hong I.S., Oh D.Y, Kim I.G. Generic Application of Wilks’ Tolerance Limit Evaluation Approach to Nuclear Safety. OESD/CSNI Workshop on Best Estimate Methods and Uncertainty Evaluations. 2011:16—25
---
For citation: Polevoi M.A. Sensitivity Analysis for Design Extension Conditions of a VVER-1200 Power Unit. Bulletin of MPEI. 2024;5:130—148. (in Russian). DOI: 10.24160/1993-6982-2024-5-131-148

