Regularization of a Singularly Perturbed Integro-differential Equation with Several Unstable Spectral Values of Exponential Inhomogeneity

Authors

  • Абдухафиз [Abdukhafiz] Абдурасулович [A.] Бободжанов [Bobodzhanov]
  • Машхура [Mashkhura] Абдухафизовна [A.] Бободжанова [Bobodzhanovа]
  • Валерий [Valeriy] Федорович [F.] Сафонов [Safonov]

DOI:

https://doi.org/10.24160/1993-6982-2024-5-179-188

Keywords:

singularly perturbed problem, integro-differential equation, exponential inhomogeneity, spectral value instability, regularized asymptotics of the fundamental solution

Abstract

The article considers Cauchy’s integro-differential problem with two exponential inhomogeneities, the spectral values of which vanish at various isolated points on a segment of the independent variable. The problem belongs to the class of singularly perturbed equations with an unstable spectrum. Previously, a similar problem was considered for the case when there is a single point of spectral values instability. A study of such problems is especially difficult in the vicinity of zeros of the spectral inhomogeneity value. In the case considered, the application of the well-known procedure of Lomov's regularization method does not seem to be possible. Therefore, it was decided to apply a method for constructing the asymptotics of the solution to the original problem based on the use of a regularized asymptotic solution to the fundamental solution of the corresponding homogeneous equation, the construction of which has not been considered until now from the standpoint of the regularization method. In the first part of the study, an algorithm for the regularization method is developed for constructing the asymptotics (of any order in the parameter) of the fundamental solution of the corresponding homogeneous integro-differential equation. The second part is devoted to constructing the asymptotics of the solution to the original problem. The main term of the asymptotics is constructed in detail, and the possibility of constructing its higher terms is pointed out.

Author Biographies

Абдухафиз [Abdukhafiz] Абдурасулович [A.] Бободжанов [Bobodzhanov]

Dr.Sci. (Phys.-Math.), Professor of Higher Mathematics Dept., NRU MPEI, e-mail: bobojanova@mpei.ru

Машхура [Mashkhura] Абдухафизовна [A.] Бободжанова [Bobodzhanovа]

Ph.D. (Phys.-Math.), Assistant Professor of Higher Mathematics Dept., NRU MPEI, e-mail: BobojanovaMA@mpei.ru

Валерий [Valeriy] Федорович [F.] Сафонов [Safonov]

Dr.Sci. (Phys.-Math.), Professor of Higher Mathematics Dept., NRU MPEI, e-mail: SafonovVF@mpei.ru

References

1. Бободжанова М.А, Бободжанов А.А., Калимбетов Б.Т., Сафонов В.Ф. Сингулярно возмущенные интегро-дифференциальные уравнения с линейной комбинацией экспоненциальных неоднородностей. М.: Изд-во МЭИ, 2023.
2. Ломов С.А. Введение в общую теорию сингулярных возмущений. М.: Наука, 1981.
3. Ломов С.А., Ломов И.С. Основы математической теории пограничного слоя. М.: Изд-во Московского ун-та, 2011.
4. Иманалиев М.И. Колебания и устойчивость решений сингулярно возмущенных интегро-дифференциальных систем. Фрунзе: Илим, 1974.
5. Сафонов В.Ф., Бободжанов А.А. Курс высшей математики. Сингулярно возмущенные задачи и метод регуляризации. М.: Издат. дом МЭИ, 2012.
6. Сафонов В.Ф., Бободжанов А.А. Сингулярно возмущенные интегро-дифференциальные уравнения типа Фредгольма и системы с внутренними переходными слоями. М.: Изд-во «Спутник+», 2018
---
Для цитирования: Бободжанов А.А., Бободжанова М.А., Сафонов В.Ф. Регуляризация сингулярно возмущенного интегро-дифференциального уравнения с несколькими нестабильными спектральными значениями экспоненциальной неоднородности // Вестник МЭИ. 2024. № 5. С. 179—188. DOI: 10.24160/1993-6982-2024-5-179-188
---
Исследование выполнено при поддержке гранта Российского научного фонда (проект № 23-21-00496)
---
Конфликт интересов: авторы заявляют об отсутствии конфликта интересов
#
1. Bobodzhanova M.A, Bobodzhanov A.A., Kalimbetov B.T., Safonov V.F. Singulyarno Vozmushchennye Integro-differentsial'nye Uravneniya s Lineynoy Kombinatsiey Eksponentsial'nykh Neodnorodnostey. M.: Izd-vo MEI, 2023. (in Russian).
2. Lomov S.A. Vvedenie v Obshchuyu Teoriyu Singulyarnykh Vozmushcheniy. M.: Nauka, 1981. (in Russian).
3. Lomov S.A., Lomov I.S. Osnovy Matematicheskoy Teorii Pogranichnogo Sloya. M.: Izd-vo Moskovskogo un-ta, 2011. (in Russian).
4. Imanaliev M.I. Kolebaniya i Ustoychivost' Resheniy Singulyarno Vozmushchennykh Integro-differentsial'nykh Sistem. Frunze: Ilim, 1974. (in Russian).
5. Safonov V.F., Bobodzhanov A.A. Kurs Vysshey Matematiki. Singulyarno Vozmushchennye Zadachi i Metod Regulyarizatsii. M.: Izdat. Dom MEI, 2012. (in Russian).
6. Safonov V.F., Bobodzhanov A.A. Singulyarno Vozmushchennye Integro-differentsial'nye Uravneniya Tipa Fredgol'ma i Sistemy s Vnutrennimi Perekhodnymi Sloyami. M.: Izd-vo «Sputnik+», 2018. (in Russian)
---
For citation: Bobodzhanov A.A., Bobodzhanova M.A., Safonov V.F. Regularization of a Singularly Perturbed Integro-differential Equation with Several Unstable Spectral Values of Exponential Inhomogeneity. Bulletin of MPEI. 2024;5:179—188. (in Russian). DOI: 10.24160/1993-6982-2024-5-179-188
---
The study was carried out with the support by a Grant from the Russian Science Foundation (Project No. 23-21-00496)
---
Conflict of interests: the authors declare no conflict of interest

Published

2024-06-18

Issue

Section

Differential Equations and Mathematical Physics (1.1.2)