A Control Method in Systems with Periodic Signals for Suppressing Higher Harmonic Components in the Subway Car Traction Current

Authors

  • Мария [Mariya] Андреевна [A.] Гуляева [Gulyaeva]
  • Дмитрий [Dmitriy] Михайлович [M.] Шпак [Shpak]
  • Максим [Maksim] Михайлович [M.] Лашкевич [Lashkevich]
  • Дмитрий [Dmitriy] Иванович [I.] Алямкин [Alyamkin]
  • Ксения [Kseniya] Георгиевна [G.] Федорова [Fedorova]
  • Алексей [Aleksey] Сергеевич [S.] Анучин [Anuchin]
  • Вадим [Vadim] Николаевич [N.] Остриров [Ostrirov]

DOI:

https://doi.org/10.24160/1993-6982-2024-6-20-29

Keywords:

control method in repetitive systems, suppression of harmonic components, traction electric drive, DC-DC converter, six-pulse rectifier, collision prevention system

Abstract

The Moscow Metro has internal signaling systems that ensure safety and optimal speed of trains. The train's traction electric drive shall not interfere with the operation of these systems during stops or movement. The traction current main harmonic components have frequencies of 300 Hz and its multiples, which are produced by rectification of the 50 Hz three-phase AC power supply voltage. In addition, the traction current harmonic composition includes components with frequencies that are multiples of the 50 Hz power supply frequency: 100, 150, 200 Hz, etc., which are caused by malfunctions of the rectifier at a combined traction and step-down substation, such as loss of voltage in one of the rectified phases or a the three-phase voltage unbalance. Therefore, to reduce the influence of the traction electric drive current harmonic composition, the information signal encoding frequencies are selected in intermediate bands. However, while the train is moving, the frequency of the motor and, accordingly, of the currents varies. When these frequencies are superimposed on the 300 Hz fundamental harmonic component, subharmonics with a large amplitude can occur, which produce interference in the signals used in the collision prevention and cruise control systems. Given that the traction current is a periodic signal, an algorithmic method for adjusting the traction current harmonic composition is proposed, which is based on the control method in repeating systems. By using this algorithm, the voltage converter module, which is part of the transmission electric drive, can be used as an active filter. The algorithm has been tested on the traction electric drive of a subway train car and has shown a tenfold reduction in the 300 Hz harmonic component amplitude.

Author Biographies

Мария [Mariya] Андреевна [A.] Гуляева [Gulyaeva]

Ph.D. (Techn.), Engineer of Automated Electric Drive Dept., NRU MPEI, e-mail: tilgivelse@yandex.ru

Дмитрий [Dmitriy] Михайлович [M.] Шпак [Shpak]

Ph.D. (Techn.), Assistant of Automated Electric Drive Dept., NRU MPEI, e-mail: disona@yandex.ru

Максим [Maksim] Михайлович [M.] Лашкевич [Lashkevich]

Ph.D. (Techn.), Engineer of Automated Electric Drive Dept., NRU MPEI, e-mail: maxsoftpage@yandex.ru

Дмитрий [Dmitriy] Иванович [I.] Алямкин [Alyamkin]

Ph.D. (Techn.), Engineer of Automated Electric Drive Dept., NRU MPEI, e-mail: aliam2002c@yandex.ru

Ксения [Kseniya] Георгиевна [G.] Федорова [Fedorova]

Ph.D. (Techn.), Assistant Professor of Automated Electric Drive Dept., NRU MPEI, e-mail: FedorovaXG@mpei.ru

Алексей [Aleksey] Сергеевич [S.] Анучин [Anuchin]

Dr.Sci. (Techn.), Head of Automated Electric Drive Dept., NRU MPEI, e-mail: AnuchinAS@mpei.ru

Вадим [Vadim] Николаевич [N.] Остриров [Ostrirov]

Dr.Sci. (Techn.), Professor of Automated Electric Drive Dept., NRU MPEI, e-mail: OstrirovVN@mpei.ru

References

1. Yaghoobi A.J., Rathnayake H., Zare F., Sharma R. Dynamic Analysis of a Modular Three-phase Rectifier System with Harmonic Mitigation Function: Addressing IEC 61000-3-12 // Proc. 2019 IEEE Intern. Conf. Industrial Technol. (ICIT). Melbourne, 2019. Pp. 1235—1240.
2. Jiao S., Song W., Feng X. Filter Parameter Optimization Design of Single-phase LCL-type Three-level Rectifier Equipped in Train for High-speed-railway Harmonic Resonance Suppression // Proc. IEEE VIII Intern. Power Electronics and Motion Control Conf. Hefei, 2016. Pp. 2589—2593.
3. Shudarek T., Luu T. Harmonic Filter Topologies for low DC Bus Capacitance of 6-pulse Rectifier Front End Adjustable Speed Drives // Proc. IEEE Appl. Power Electronics Conf. and Exposition. San Antonio, 2018. Pp. 2315—2322.
4. Zare F. A Novel Harmonic Elimination Method for a Three-phase Diode Rectifier with Controlled DC Link Current // Proc. XVI Intern. Power Electronics and Motion Control Conf. and Exposition. Antalya, 2014. Pp. 985—989.
5. Kihwele S. Modelling of Shunt Active Power Filter for Harmonics Case Study of Steel Industry // Proc. Intern. Conf. Electronics, Information and Communication. Auckland, 2019. Pp. 1—2.
6. Seifossadat S.G., Kianinezhad R., Ghasemi A., Monadi M. Quality Improvement of Shunt Active Power Filter, Using Optimized Tuned Harmonic Passive Filters // Proc. Intern. Symposium on Power Electronics, Electrical Drives, Automation and Motion. Ischia, 2008. Pp. 1388—1393.
7. Rajeshwari, Bagwari A. Voltage Harmonic Reduction Using Passive Filter Shunt Passive-active Filters for Non-linear Load // Proc. VII Intern. Conf. Communication Systems and Network Technol. Nagpur, 2017. Pp. 131—136.
8. Fukuda S., Hiei I. Auxiliary Supply Assisted Input Current Harmonic Reduction in 12-Pulse Thyristor Rectifiers // Proc. Intern. Conf. Power Electronics and Drives Systems. Kuala Lumpur, 2005. Pp. 854—859.
9. Motta L., Faúndes N. Active/passive Harmonic Filters: Applications, Challenges & Trends // Proc. XVII Intern. Conf. Harmonics and Quality of Power. Belo Horizonte, 2016. Pp. 657—662.
10. Leite M. e. a. Thyristor Controlled Rectifiers for Subway Substations // Proc. IEEE XXXVI Power Electronics Specialists Conf. Dresden, 2005. Pp. 2244—2250.
11. Lian Y. e. a. Harmonic Reduction Mechanism at DC Link of Two Different 24-pulse Rectifiers // Proc. IEEE Transportation Electrification Conf. and Expo. Harbin, 2017. Pp. 1—6.
12. Aoyang H. e. a. Research on the Influence of Urban Metro Traction Power Supply System on Power Grid Harmonics // Proc. First Intern. Conf. Electronics Instrumentation & Information Systems. Harbin, 2017. Pp. 1—4.
13. Yakovenko M. e. a. Active Elimination of Supply Current Harmonics in a Subway Motor-Compressor Drive // Proc. IEEE 59th Intern. Sci. Conf. Power and Electrical Engineering of Riga Technical University. Riga, 2018. Pp. 1—4.
14. Navalkar S.T., van Solingen E., van Wingerden J. -W. Wind Tunnel Testing of Subspace Predictive Repetitive Control for Variable Pitch Wind Turbines // IEEE Trans. Control Systems Technol. 2015. V. 23(6). Pp. 2101—2116.
15. Wang Y., Wu M., Zhang M., Chen L., She J. A Repetitive-control Method Based on Sliding-mode Control for Nonlinear Systems with External Disturbances // Proc. 41st Chinese Control Conf. Hefei, 2022. Pp. 761—766.
16. Wu M., Xu B., Cao W., She J. Aperiodic Disturbance Rejection in Repetitive-control Systems // IEEE Trans. Control Systems Technol. 2014. V. 22(3). Pp. 1044—1051.
17. Kulmanov V., Anuchin A., Bychkova E., Prudnikova Y. Simulation of Power Converter with Repetitive Control System for Higher Harmonics Elimination // Proc. IX Intern. Conf. Power Drives Systems. Perm, 2016. Pp. 1—5.
18. Lu H. e. a. Voltage Differential Feedback Control for Three-phase PV Inverter Based on Repetitive Control // Proc. IEEE V Intern. Symp. Power Electronics for Distributed Generation Systems. Galway, 2014. Pp. 1—6.
19. Navalkar S.T., van Solingen E., van Wingerden J. -W. Wind Tunnel Testing of Subspace Predictive Repetitive Control for Variable Pitch Wind Turbines // IEEE Trans. Control Systems Technol. 2015. V. 23(6). Pp. 2101—2116.
20. Eremin E.L., Nikiforova L.V., Shelenok E.A. Combined Repetitive Control System for Manipulator in the Presence of Saturated Inputs // Proc. Intern. Russian Automation Conf. Sochi, 2023. Pp. 499—504.
---
Для цитирования: Гуляева М.А., Шпак Д.М., Лашкевич М.М., Алямкин Д.И., Федорова К.Г., Анучин А.С., Остриров В.Н. Метод управления в системах с периодическими сигналами для подавления высших гармоник в тяговом токе вагонов метро // Вестник МЭИ. 2024. № 6. С. 20—29. DOI: 10.24160/1993-6982-2024-6-20-29
---
Работа выполнена при поддержке Министерства науки и высшего образования Российской Федерации в рамках Государственного задания № FSWF-2023-0017 (Соглашение № 075-03-2023-383 от 18 января 2023 г.) в сфере научной деятельности на 2023 — 2025 гг
---
Конфликт интересов: авторы заявляют об отсутствии конфликта интересов
#
1. Yaghoobi A.J., Rathnayake H., Zare F., Sharma R. Dynamic Analysis of a Modular Three-phase Rectifier System with Harmonic Mitigation Function: Addressing IEC 61000-3-12. Proc. 2019 IEEE Intern. Conf. Industrial Technol. (ICIT). Melbourne, 2019:1235—1240.
2. Jiao S., Song W., Feng X. Filter Parameter Optimization Design of Single-phase LCL-type Three-level Rectifier Equipped in Train for High-speed-railway Harmonic Resonance Suppression. Proc. IEEE VIII Intern. Power Electronics and Motion Control Conf. Hefei, 2016:2589—2593.
3. Shudarek T., Luu T. Harmonic Filter Topologies for low DC Bus Capacitance of 6-pulse Rectifier Front End Adjustable Speed Drives. Proc. IEEE Appl. Power Electronics Conf. and Exposition. San Antonio, 2018:2315—2322.
4. Zare F. A Novel Harmonic Elimination Method for a Three-phase Diode Rectifier with Controlled DC Link Current. Proc. XVI Intern. Power Electronics and Motion Control Conf. and Exposition. Antalya, 2014:985—989.
5. Kihwele S. Modelling of Shunt Active Power Filter for Harmonics Case Study of Steel Industry. Proc. Intern. Conf. Electronics, Information and Communication. Auckland, 2019:1—2.
6. Seifossadat S.G., Kianinezhad R., Ghasemi A., Monadi M. Quality Improvement of Shunt Active Power Filter, Using Optimized Tuned Harmonic Passive Filters. Proc. Intern. Symposium on Power Electronics, Electrical Drives, Automation and Motion. Ischia, 2008:1388—1393.
7. Rajeshwari, Bagwari A. Voltage Harmonic Reduction Using Passive Filter Shunt Passive-active Filters for Non-linear Load. Proc. VII Intern. Conf. Communication Systems and Network Technol. Nagpur, 2017:131—136.
8. Fukuda S., Hiei I. Auxiliary Supply Assisted Input Current Harmonic Reduction in 12-Pulse Thyristor Rectifiers. Proc. Intern. Conf. Power Electronics and Drives Systems. Kuala Lumpur, 2005:854—859.
9. Motta L., Faúndes N. Active/passive Harmonic Filters: Applications, Challenges & Trends. Proc. XVII Intern. Conf. Harmonics and Quality of Power. Belo Horizonte, 2016:657—662.
10. Leite M. e. a. Thyristor Controlled Rectifiers for Subway Substations. Proc. IEEE XXXVI Power Electronics Specialists Conf. Dresden, 2005:2244—2250.
11. Lian Y. e. a. Harmonic Reduction Mechanism at DC Link of Two Different 24-pulse Rectifiers. Proc. IEEE Transportation Electrification Conf. and Expo. Harbin, 2017:1—6.
12. Aoyang H. e. a. Research on the Influence of Urban Metro Traction Power Supply System on Power Grid Harmonics. Proc. First Intern. Conf. Electronics Instrumentation & Information Systems. Harbin, 2017:1—4.
13. Yakovenko M. e. a. Active Elimination of Supply Current Harmonics in a Subway Motor-Compressor Drive. Proc. IEEE 59th Intern. Sci. Conf. Power and Electrical Engineering of Riga Technical University. Riga, 2018:1—4.
14. Navalkar S.T., van Solingen E., van Wingerden J. -W. Wind Tunnel Testing of Subspace Predictive Repetitive Control for Variable Pitch Wind Turbines. IEEE Trans. Control Systems Technol. 2015;23(6):2101—2116.
15. Wang Y., Wu M., Zhang M., Chen L., She J. A Repetitive-control Method Based on Sliding-mode Control for Nonlinear Systems with External Disturbances. Proc. 41st Chinese Control Conf. Hefei, 2022:761—766.
16. Wu M., Xu B., Cao W., She J. Aperiodic Disturbance Rejection in Repetitive-control Systems. IEEE Trans. Control Systems Technol. 2014;22(3):1044—1051.
17. Kulmanov V., Anuchin A., Bychkova E., Prudnikova Y. Simulation of Power Converter with Repetitive Control System for Higher Harmonics Elimination. Proc. IX Intern. Conf. Power Drives Systems. Perm, 2016:1—5.
18. Lu H. e. a. Voltage Differential Feedback Control for Three-phase PV Inverter Based on Repetitive Control. Proc. IEEE V Intern. Symp. Power Electronics for Distributed Generation Systems. Galway, 2014:1—6.
19. Navalkar S.T., van Solingen E., van Wingerden J. -W. Wind Tunnel Testing of Subspace Predictive Repetitive Control for Variable Pitch Wind Turbines. IEEE Trans. Control Systems Technol. 2015;23(6):2101—2116.
20. Eremin E.L., Nikiforova L.V., Shelenok E.A. Combined Repetitive Control System for Manipulator in the Presence of Saturated Inputs. Proc. Intern. Russian Automation Conf. Sochi, 2023:499—504
---
For citation: Gulyaeva M.A., Shpak D.M., Lashkevich M.M., Alyamkin D.I., Fedorova K.G., Anuchin A.S., Ostrirov V.N. A Control Method in Systems with Periodic Signals for Suppressing Higher Harmonic Components in the Subway Car Traction Current. Bulletin of MPEI. 2024;6:20—29. (in Russian). DOI: 10.24160/1993-6982-2024-6-20-29
---
The work is executed with the Support of the Ministry of Science and Higher Education of the Russian Federation within the Framework of State Assignment No. FSWF-2023-0017 (Agreement No. 075-03-2023-383, January 18, 2023) in the Field of Scientific Activity for 2023 — 2025
---
Conflict of interests: the authors declare no conflict of interest

Published

2024-09-04

Issue

Section

Electrical Complexes and Systems (2.4.2)