A Device for Dedusting the Solar Panel Optical Surface
DOI:
https://doi.org/10.24160/1993-6982-2024-6-68-75Keywords:
a solar panel, dust, cleaning part, electric motor, headpieces, operation principle, power capacity, temperature, efficiencyAbstract
Recent years have witnessed a global climate change, one of the consequences of which is that dust levels in certain areas often exceeded their normal values, and there is a growing likelihood of dust storms, which negatively affect the efficiency of solar panels. Therefore, the need to dedust their surfaces by using cleaning devices is becoming increasingly more important. The purpose of this work is to develop, construct and analyze the use of a rationally designed device that would effectively dedust the solar panel surface, thereby increasing its efficiency. The research activities were carried out in the Tashkent city in the fall of 2023 and were based on measurement and experimental methods. The developed dedusting device comprises a frame, a small-capacity electric motor, a low-voltage water pump, a cleaning part, a liquid reservoir, a cleaning sponge, a headpiece, a rope, a rotation unit, a pulley, cylindrical guides, a linear bearing, a motion switchover button, and a mechatronic part. As a result of using the developed solar panel dedusting device, the panel surface temperature was decreased by 3.6°С, and the minimum efficiency value in the day of measurement was 9.53%, which is by 11.46% higher than the minimum efficiency of a solar panel without a cleaning system. On the average, the efficiency of the panel equipped with the cleaning device is by 9.13% higher, and its short circuit current has been increased by 4.05% on the average. It is advsable to use the presented design for small-capacity solar photovoltaic stations and solar panels that are installed on the roofs of buildings, social facilities and dwelling houses.
References
2. Chernova N.I., Kisileva S.V. The Resource Potential of the Territory of Uzbekistan for Microalgae Cultivation for Energy Purposes // Appl. Solar Energy. 2022. V. 58. Pp. 311—317.
3. Allayev K.R., Avezova N.R. Hydrogen — the Future of Power Engineering for the World and Uzbekistan Purposes // Appl. Solar Energy. 2021. V. 57. Pp. 575—583.
4. В Самаркандской области запущена солнечная фотоэлектрическая станция промышленного масштаба [Электрон. ресурс] https://minenergy.uz/ru/news/view/1957 (дата обращения 14.12.2023).
5. Фотоэлектрическая станция в солнечной степи: она обеспечит электроэнергией 10000 домов [Электрон. ресурс] https://kun.uz/ru/news/2022/03/23/fotoelektricheskaya-stansiya-v-solnechnoy-stepi-ona-obespechit-elektroenergiyey-100-000-domov (дата обращения 14.12.2023).
6. Юлдошев И.А., Шогучкаров С.К., Рустамова Ш.Ш., Ботиров Б.М., Тураев Ф.Ш. Влияние загрязненности на параметры маломощной фотоэлектрической станции, подключенной к низковольтной электрической сети // Проблемы энерго- и ресурсосбережения. 2022. № 4. С. 259—269.
7. Chaturvedi M., Ramalingam V. Dust Repellent Nano Coating for Operational Efficiency Enhancement of Solar Photovoltaic System // Appl. Solar Energy. 2022. V. 58. Pp. 210—216.
8. Yuldashev I.A. e. a. About the Production of Lemons Grown in an Autonomous Gabled Solar Greenhouse // Appl. Solar Energy. 2023. V. 59. Pp. 44—47.
9. Zikrillayev Kh.F., Sodiqov T.B. Study of the Structural and Mechanical Part of the Hanwha Solar Panel // Sci. Techn. J. of FerPI. 2023. V. 27. Pp. 146—150.
10. Абугхиятха А. Устройство автоматизированной очистки солнечной панели // Вузовская наука в современных условиях: Сб. материалов 54 науч.-техн. конф. Ульяновск: Ульяновский гос. техн. ун-т, 2020. Т. 1. С. 27—31.
11. Исмагилов Ф.Р., Вавилов В.Е., Нургалиева Р.А. Система очистки солнечных панелей // Вестник УГАТУ. 2017. № 3(77). С. 60—65.
12. Пат. № 108964602В КТ. Эффективное оборудования для очистки солнечных батарей / У Цзяньбинь. // Бюл. изобрет. 2020.
13. Жильцов С.А. Повышение КПД солнечных панелей [Электрон. ресурс] https://cyberleninka.ru/article/n/povyshenie-kpd-solnechnyh-batarey (дата обращения 14.12.2023).
14. Pat. US8771432B2. Solar Panel Cleaning System and Method.
15. Пат. № 2997875 ФР. Устройство для очистки отражающих поверхностей плоских и слегка изогнутых зеркал в солнечной установке / Лео К., Лиотар С., Белиерес К. // Бюл. изобрет. 2016.
16. Пат. № 2015006648 ЯП. Чистящее устройство / Масаки Кодама, Хидеаки Нагура, Рёдзи Ишимура, Ясухиро Сакамото, Дзюънити Исида // Бюл. изобрет. 2019.
17. Ahsan A., Navqi A.A., Nadeem T.B. Experimental Investigation of Dust Accumulation on the Performance of the Photovoltaic Modules: a Case Study of Karachi, Pakistan // Appl. Solar Energy. 2021. V. 57. Pp. 370—376.
18. Haydaroglu C., Gumus B. Investigation of the Effect of Short-term Environmental Contamination on Energy Production in Photovoltaic Panels: Dicle University Solar Power Plant Example // Appl. Solar Energy. 2017. V. 53. Pp. 31—34.
19. Alsutanny Y.A., Eman A. Monitoring Effect of the Meteorological Parameters on Electrical Energy Generation by Solar Cells // Appl. Solar Energy. 2021. V. 57. Pp. 13—22.
20. Bazarbayev R., Kurbanov D., Karazhanov S. The Possibility of the Exploration of Influence of External Factors on the Solar Panels in Laboratory Conditions // Appl. Solar Energy. 2023. V. 59. Pp. 164—168.
21. Al Khuffash K., Lamont L.A., El Chaar L. Analyzing the Effect of Desert Environment on the Performance of Photovoltaics // Appl. Solar Energy. 2014. V. 50. Pp. 215—220.
---
Для цитирования: Содиков Т.Б., Зикриллаев Х.Ф. Устройство для очистки оптической поверхности солнечной панели от пыли // Вестник МЭИ. 2024. № 6. С. 68—75. DOI: 10.24160/1993-6982-2024-6-68-75.
#
1. Allaev K.R. Sovremennaya Energetika i Perspektivy ee Razvitiya. T.: Izd-vo Fan va Tehnologiyala, 2021. (in Russian).
2. Chernova N.I., Kisileva S.V. The Resource Potential of the Territory of Uzbekistan for Microalgae Cultivation for Energy Purposes. Appl. Solar Energy. 2022;58:311—317.
3. Allayev K.R., Avezova N.R. Hydrogen — the Future of Power Engineering for the World and Uzbekistan Purposes. Appl. Solar Energy. 2021;57:575—583.
4. V Samarkandskoy Oblasti Zapushchena Solnechnaya Fotoelektricheskaya Stantsiya Promyshlennogo Masshtaba [Elektron. Resurs] https://minenergy.uz/ru/news/view/1957 (Data Obrashcheniya 14.12.2023). (in Russian).
5. Fotoelektricheskaya Stantsiya v Solnechnoy Stepi: Ona Obespechit Elektroenergiey 10000 Domov [Elektron. Resurs] https://kun.uz/ru/news/2022/03/23/fotoelektricheskaya-stansiya-v-solnechnoy-stepi-ona-obespechit-elektroenergiyey-100-000-domov (Data Obrashcheniya 14.12.2023). (in Russian).
6. Yuldoshev I.A., Shoguchkarov S.K., Rustamova Sh.Sh., Botirov B.M., Turaev F.Sh. Vliyanie Zagryaznennosti na Parametry Malomoshchnoy Fotoelektricheskoy Stantsii, Podklyuchennoy k Nizkovol'tnoy Elektricheskoy Seti. Problemy Energo- i Resursosberezheniya. 2022;4:259—269.
7. Chaturvedi M., Ramalingam V. Dust Repellent Nano Coating for Operational Efficiency Enhancement of Solar Photovoltaic System. Appl. Solar Energy. 2022;58:210—216.
8. Yuldashev I.A. e. a. About the Production of Lemons Grown in an Autonomous Gabled Solar Greenhouse. Appl. Solar Energy. 2023;59:44—47.
9. Zikrillayev Kh.F., Sodiqov T.B. Study of the Structural and Mechanical Part of the Hanwha Solar Panel. Sci. Techn. J. of FerPI. 2023;27:146—150.
10. Abugkhiyatkha A. Ustroystvo Avtomatizirovannoy Ochistki Solnechnoy Paneli. Vuzovskaya Nauka v Sovremennykh Usloviyakh: Sb. Materialov 54 Nauch.-tekhn. Konf. Ul'yanovsk: Ul'yanovskiy Gos. Tekhn. Un-t, 2020;1:27—31. (in Russian).
11. Ismagilov F.R., Vavilov V.E., Nurgalieva R.A. Sistema Ochistki Solnechnykh Paneley. Vestnik UGATU. 2017;3(77):60—65. (in Russian).
12. Pat. № 108964602V KT. Effektivnoe Oborudovaniya dlya Ochistki Solnechnykh Batarey. U TSzyan'bin'. Byul. Izobret. 2020. (in Russian).
13. Zhil'tsov S.A. Povyshenie KPD Solnechnykh Paneley [Elektron. Resurs] https://cyberleninka.ru/article/n/povyshenie-kpd-solnechnyh-batarey (Data Obrashcheniya 14.12.2023). (in Russian).
14. Pat. US8771432B2. Solar Panel Cleaning System and Method.
15. Pat. № 2997875 FR. Ustroystvo dlya Ochistki Otrazhayushchikh Poverkhnostey Ploskikh i Slegka Izognutykh Zerkal v Solnechnoy Ustanovke. Leo K., Liotar S., Belieres K. Byul. izobret. 2016. (in Russian).
16. Pat. № 2015006648 YaP. Chistyashchee Ustroystvo. Masaki Kodama, Khideaki Nagura, Redzi Ishimura, Yasukhiro Sakamoto, Dzyu'niti Isida. Byul. Izobret. 2019. (in Russian).
17. Ahsan A., Navqi A.A., Nadeem T.B. Experimental Investigation of Dust Accumulation on the Performance of the Photovoltaic Modules: a Case Study of Karachi, Pakistan. Appl. Solar Energy. 2021;57:370—376.
18. Haydaroglu C., Gumus B. Investigation of the Effect of Short-term Environmental Contamination on Energy Production in Photovoltaic Panels: Dicle University Solar Power Plant Example. Appl. Solar Energy. 2017;53:31—34.
19. Alsutanny Y.A., Eman A. Monitoring Effect of the Meteorological Parameters on Electrical Energy Generation by Solar Cells. Appl. Solar Energy. 2021;57:13—22.
20. Bazarbayev R., Kurbanov D., Karazhanov S. The Possibility of the Exploration of Influence of External Factors on the Solar Panels in Laboratory Conditions. Appl. Solar Energy. 2023;59:164—168.
21. Al Khuffash K., Lamont L.A., El Chaar L. Analyzing the Effect of Desert Environment on the Performance of Photovoltaics. Appl. Solar Energy. 2014;50:215—220
---
For citation: Sodikov T.B., Zikrillayev Kh.F. A Device for Dedusting the Solar Panel Optical Surface. Bulletin of MPEI. 2024;6:68—75. (in Russian). DOI: 10.24160/1993-6982-2024-6-68-75

