Improvement of the Methodology for Selecting the Working Fluid and Flash Tank for Organic Rankine Cycle Units
DOI:
https://doi.org/10.24160/1993-6982-2024-6-83-91Keywords:
energy-saving technologies, low-grade thermal energy, organic Rankine cycle, limit saturation temperatureAbstract
Although the production of units operating on the basis of the organic Rankine cycle (ORC) began in the 1980s, the constant development of refrigeration technology and thermodynamics has led to the use of different working fluids and types of flash tanks. A specific feature of designing the Rankine cycle on organic coolants is the type of their phase curves and the value of the critical and triple points.
The correct choice of the working fluid is important for efficient operation of the ORC unit. It should ensure that the maximum efficiency of system operation is achieved and should be stable under various temperature conditions. Optimization of the technique consists in parametric modeling of cycle efficiency and power dependences versus the saturation temperature and the working fluid. As a constraint, to avoid problems associated with the supercritical Rankine cycle caused by the use of liquids with low critical temperatures, it is necessary to make sure that the working fluid critical temperature does not fall below 50°C. Turbines in the ORC system can be radial or axial, depending on the size of the unit, mass flow rate and pressure ratio. Axial turbines are preferred for high mass flow rates and low pressure differences, while radial turbines are suitable for low mass flow rates and high pressure differences.
An algorithm for selecting a working fluid for an arbitrary heat source and a procedure for determining the flash tank efficiency are proposed.
The influence of the choice of the optimal working fluid on the heat source parameters is shown, and the criterion of complete heat recovery (absorption) is formulated.
References
2. Feng Y-Q e. a. Operation Characteristics and Performance Prediction of a 3 kW Organic Rankine Cycle (ORC) with Automatic Control System Based on Machine Learning Methodology // Energy. 2023. V. 263(4). P. 125857.
3. Ezoji H., Ajarostaghi S.S.M. Thermodynamic-CFD Analysis of Waste Heat Recovery from Homogeneous Charge Compression Ignition (HCCI) Engine by Recuperative Organic Rankine Cycle (RORC): Effect of Operational Parameters // Energy. 2020. V. 205. P. 117989.
4. Feng Y. e. a. Parametric Analysis and Thermal-economical Optimization of a Parallel Dual Pressure Evaporation and Two Stage Regenerative Organic Rankine Cycle Using Mixture Working Fluids // Energy. 2023. V. 263(4). P. 125670.
5. Baniam M., Yari M., Mehr A.S. Optimization Waste Heat Recovery and Power Generation for Industrial Sustainability: a Comparative Study of Supercritical CO2 Brayton, Organic Rankine, and Inverted Brayton Cycles with Synthesis Natural Gas as Heat Source // Energy. 2024. V. 47. Pp. 1—46.
6. Chen L. е. а. Thermodynamic Analysis of a Hybrid Energy System Coupling Solar Organic Rankine Cycle and Ground Source Heat Pump: Exploring Heat Cascade Utilization // Energy. 2023. V. 284(C). Pp. 1—49.
7. Shahidi S.M.M. e. a. Exergy and Energy Analysis of Organic Rankine Cycle Integration in the Carbon Black Industry Using Pinch Technology // Thermal Sci. and Eng. Progress. 2023. V. 46. P. 102160.
8. Carraro G., Bori V., Lazzaretto A., Toniato G., Danieli P. Experimental Investigation of an Innovative Biomass-fired Micro-ORC System for Cogeneration Applications // Renewable Energy. 2020. V. 161. Pp. 1226—1243.
9. Fatigati F., Bartomeo M.D., Cipollone R. Experimental and Numerical Characterization of a Positive Displacement Vane Expander with an Auxiliary Injection Port for an ORC-based Power Unit // Energy Proc. 2018. V. 148. Pp. 830—837.
10. Han Y., Zuo T., Chen R., Xu Y. Experimental Study and Energy Loss Analysis of an R245fa Organic Rankine Cycle Prototype System with a Radial Piston Expander // Appl. Thermal Energy. 2020. V. 169(6). P. 114939.
11. Campana C., Cioccolamti L., Remzi M., Caresana F. Experimental Analysis of a Small-scale Scroll Expander for Low-temperature Waste Heat Recovery in Organic Rankine Cycle // Energy. 2019. V. 187. P. 115929.
12. Карабарин Д.И. Повышение эффективности утилизации низкопотенциальной энергии теплотехнологических установок: дис. … канд. техн. наук. Красноясрк: Сибирский федеральный ун-т, 2021.
13. Цветков О.Б. и др. Озонобезопасные хладагенты // Научный журнал НИУ «ИТМО». Серия «Холодильная техника и кондиционирование». 2014. № 3. С. 98—111.
14. Muhammad I., Muhammad U., Byung S.P., Dong H.L. Volumetric Expanders for Low Grade Heat and Waste Heat Recovery Applications // Renewable and Sustainable Energy Rev. 2016. V. 57. Pp. 1090—1109.
15. CoolProp [Электрон. ресурс] http://www.coolprop.org (дата обращения 02.02.2024).
---
Для цитирования: Карабарин Д.И. Совершенствование методики выбора рабочего тела и расширителя для установок органического цикла Ренкина // Вестник МЭИ. 2024. № 6. С. 83—91. DOI: 10.24160/1993-6982-2024-6-83-91.
#
1. Tocci L., Pal T., Pesmazoglou I., Franchetti B. Small Scale Organic Rankine Cycle (ORC): a Techno-economic Review. Energies. 2017:10:413—439.
2. Feng Y-Q e. a. Operation Characteristics and Performance Prediction of a 3 kW Organic Rankine Cycle (ORC) with Automatic Control System Based on Machine Learning Methodology. Energy. 2023:263(4):125857.
3. Ezoji H., Ajarostaghi S.S.M. Thermodynamic-CFD Analysis of Waste Heat Recovery from Homogeneous Charge Compression Ignition (HCCI) Engine by Recuperative Organic Rankine Cycle (RORC): Effect of Operational Parameters. Energy. 2020:205:117989.
4. Feng Y. e. a. Parametric Analysis and Thermal-economical Optimization of a Parallel Dual Pressure Evaporation and Two Stage Regenerative Organic Rankine Cycle Using Mixture Working Fluids. Energy. 2023:263(4):125670.
5. Baniam M., Yari M., Mehr A.S. Optimization Waste Heat Recovery and Power Generation for Industrial Sustainability: a Comparative Study of Supercritical CO2 Brayton, Organic Rankine, and Inverted Brayton Cycles with Synthesis Natural Gas as Heat Source. Energy. 2024:47:1—46.
6. Chen L. е. а. Thermodynamic Analysis of a Hybrid Energy System Coupling Solar Organic Rankine Cycle and Ground Source Heat Pump: Exploring Heat Cascade Utilization. Energy. 2023:284(C):1—49.
7. Shahidi S.M.M. e. a. Exergy and Energy Analysis of Organic Rankine Cycle Integration in the Carbon Black Industry Using Pinch Technology. Thermal Sci. and Eng. Progress. 2023:46:102160.
8. Carraro G., Bori V., Lazzaretto A., Toniato G., Danieli P. Experimental Investigation of an Innovative Biomass-fired Micro-ORC System for Cogeneration Applications. Renewable Energy. 2020:161:1226—1243.
9. Fatigati F., Bartomeo M.D., Cipollone R. Experimental and Numerical Characterization of a Positive Displacement Vane Expander with an Auxiliary Injection Port for an ORC-based Power Unit. Energy Proc. 2018:148:830—837.
10. Han Y., Zuo T., Chen R., Xu Y. Experimental Study and Energy Loss Analysis of an R245fa Organic Rankine Cycle Prototype System with a Radial Piston Expander. Appl. Thermal Energy. 2020:169(6):114939.
11. Campana C., Cioccolamti L., Remzi M., Caresana F. Experimental Analysis of a Small-scale Scroll Expander for Low-temperature Waste Heat Recovery in Organic Rankine Cycle. Energy. 2019:187:115929.
12. Karabarin D.I. Povyshenie Effektivnosti Utilizatsii Nizkopotentsial'noy Energii Teplotekhnologicheskikh Ustanovok: Dis. … Kand. Tekhn. Nauk. Krasnoyasrk: Sibirskiy Federal'nyy Un-t, 2021. (in Russian).
13. Tsvetkov O.B. i dr. Ozonobezopasnye Khladagenty. Nauchnyy Zhurnal NIU «ITMO». Seriya «Kholodil'naya Tekhnika i Konditsionirovanie». 2014;3:98—111. (in Russian).
14. Muhammad I., Muhammad U., Byung S.P., Dong H.L. Volumetric Expanders for Low Grade Heat and Waste Heat Recovery Applications. Renewable and Sustainable Energy Rev. 2016;57:1090—1109.
15. CoolProp [Elektron. Resurs] http://www.coolprop.org (Data Obrashcheniya 02.02.2024)
---
For citation: Karabarin D.I. Improvement of the Methodology for Selecting the Working Fluid and Flash Tank for Organic Rankine Cycle Units. Bulletin of MPEI. 2024;6:83—91. (in Russian). DOI: 10.24160/1993-6982-2024-6-83-91.

