Analysis of the EWMA-algorithm Properties for Detecting Disorder by Mathematical Expectation оf the Gaussian Time Series of a Moving Average

Authors

  • Геннадий [Gennadiy] Федорович [F.] Филаретов [Filaretov]
  • Юйдэ [Yude] Цинь [Qin]

DOI:

https://doi.org/10.24160/1993-6982-2024-6-128-135

Keywords:

time series disorder by mathematical expectation, exponentially weighted moving average algorithm, EWMA algorithm probabilistic characteristics, time series of a moving average

Abstract

The article addresses a study of the statistical characteristics of the exponentially weighted moving average (EWMA) algorithm, which is one of the most popular algorithms for detecting spontaneous changes in the properties (disorder) of random processes in real time.

The purpose of the work is to determine this kind of characteristics under the conditions of correlated values of a controlled time series, namely, when the process belongs to the category of moving average series. Using simulation, relationships have been found that make it possible to synthesize a controlling EWMA algorithm with preset properties, namely, to select a decisive threshold h for a given value of the mean time between false alarms  depending on the exponential smoothing parameter λ of the EWMA algorithm for various values of the order d of the controlled moving average process. In a similar way, for a number of  values, the dependences of the average delay time  in detecting a disorder and the efficiency indicator Е =  as a function of λ and the relative disorder value r were found. The possibility of synthesizing the EWMA algorithm with the highest response speed has been established by choosing the optimal value of the parameter λ for various combinations of the r and  values. A comparison of the effectiveness of EWMA algorithms for uncorrelated and correlated observations was carried out, as well as a comparison of the effectiveness of the EWMA algorithm with the effectiveness of a similar procedure of the MA algorithm.

Author Biographies

Геннадий [Gennadiy] Федорович [F.] Филаретов [Filaretov]

Dr.Sci. (Techn.), Professor of Control and Intelligent Technologies Dept., NRU MPEI, e-mail: gefefi@yandex.ru

Юйдэ [Yude] Цинь [Qin]

Ph.D.-student of Control and Intelligent Technologies Dept., NRU MPEI, e-mail: qyd38160@163.com

References

1. Shafid A. Bibliometric Analysis of EWMA and CUSUM Control Chart Schemes // Intern. J. Information Technol. and Ekectrical Eng. 2018. V. 7(2). Pp. 1—11.
2. Ruggeri F., Kenett R.S., Faltin F.W. Exponentially Weighted Moving Average (EWMA) Control Chart // Encyclopedia of Statistics in Quality and Reliability. N.-Y.: John Wiley & Sons, 2007. V. 2. Pp. 633—639.
3. Roberts S.W. A Comparison of Some Control Chart Procedures // Technometrcs. 1966. V. 8(3). Pp. 411—430.
4. Ларин А.А., Локтюшов В.А, Филаретов Г.Ф. Параметрический МА-алгоритм обнаружения разладки гауссовского временного ряда по математическому ожиданию // Вестник МЭИ. 2022. № 5. С. 112—120.
5. Ларин А.А., Филаретов Г.Ф. Исследование и разработка EWМА-алгоритма обнаружения разладки гауссовского временного ряда по математическому ожиданию // Датчики и системы. 2022. № 6. С. 9—16.
6. Bagshaw M., Johnson R.A. The Effect of Serial Correlation on the Performance of CUSUM Tests II // Technometrics. 1975. V. 17(1). Pp. 73—80.
7. Липейка А. Определение моментов изменения свойств авторегрессионных последовательностей с неизвестными параметрами // Статистические проблемы управления. 1982. Вып. 54. С. 9—28.
8. Montgomery D.C., Mastrangelo C.M. Some Statistical Process-control Methods for Autocorrelated Data // J. Quality Technol. 1991. V. 23. Pp. 179—193.
9. Rakitzis A.C., Weiß C.H., Castagliola P. Control Charts for Monitoring Correlated Counts with a Finite Range // Appl. Stoch. Models. Bus. Ind. 2017. V. 33. Pp. 733—749.
10. Lu C.-W., Reynolds M.Jr. EWMA Control Charts for Monitoring the Mean of Autocorrelated Processes // J. Qual. Technol. 2018. V. 31(2). Pp. 166—188.
11. Qiu P, Li W, Li J. A New Process Control Chart for Monitoring Short-range Serially Correlated Data // Technometrics. 2020. V. 62. Pp. 71—83.
12. Cherian A. Process Monitoring Schemes for Correlated Data // J. Research Appl. Math. 2021. V. 7(4). Pp. 28—33.
13. Silpakob K., Areepong Y., Sukparungsee S., Sunthornwat R. A New Modified EWMA Control Chart for Monitoring Processes Involving Autocorrelated Data // Intelligent Automation and Soft Computing. 2023. V. 36(1). Pp. 281—298.
14. Филаретов Г.Ф., Цинь Юйдэ. Исследование влияния коррелированности наблюдений на вероятностные характеристики МА-алгоритма обнаружения разладки гауссовского временнόго ряда по математическому ожиданию // Вестник МЭИ. 2024. № 3. C. 99—106.
15. Репин Д.С. Филаретов Г.Ф. Методические аспекты исследования алгоритмов обнаружения разладки временных рядов // Информационные технологии в науке, образовании и управлении. 2020. № 1. C. 27—32.
---
Для цитирования: Филаретов Г.Ф., Цинь Юйдэ. Анализ свойств EWМА-алгоритма обнаружения разладки по математическому ожиданию гауссовского временнόго ряда скользящего среднего // Вестник МЭИ. 2024. № 6. С. 128—135. DOI: 10.24160/1993-6982-2024-6-128-135.
#
1. Shafid A. Bibliometric Analysis of EWMA and CUSUM Control Chart Schemes. Intern. J. Information Technol. and Ekectrical Eng. 2018;7(2):1—11.
2. Ruggeri F., Kenett R.S., Faltin F.W. Exponentially Weighted Moving Average (EWMA) Control Chart. Encyclopedia of Statistics in Quality and Reliability. N.-Y.: John Wiley & Sons, 2007;2:633—639.
3. Roberts S.W. A Comparison of Some Control Chart Procedures. Technometrcs. 1966;8(3):411—430.
4. Larin A.A., Loktyushov V.A, Filaretov G.F. Parametricheskiy MA-algoritm Obnaruzheniya Razladki Gaussovskogo Vremennogo Ryada po Matematicheskomu Ozhidaniyu. Vestnik MEI. 2022;5:112—120.
5. Larin A.A., Filaretov G.F. Issledovanie i Razrabotka EWMA-algoritma Obnaruzheniya Razladki Gaussovskogo Vremennogo Ryada po Matematicheskomu Ozhidaniyu. Datchiki i Sistemy. 2022;6:9—16. (in Russian).
6. Bagshaw M., Johnson R.A. The Effect of Serial Correlation on the Performance of CUSUM Tests II. Technometrics. 1975;17(1):73—80.
7. Lipeyka A. Opredelenie Momentov Izmeneniya Svoystv Avtoregressionnykh Posledovatel'nostey s Neizvestnymi Parametrami. Statisticheskie Problemy Upravleniya. 1982;54:9—28. (in Russian).
8. Montgomery D.C., Mastrangelo C.M. Some Statistical Process-control Methods for Autocorrelated Data. J. Quality Technol. 1991;23:179—193.
9. Rakitzis A.C., Weiß C.H., Castagliola P. Control Charts for Monitoring Correlated Counts with a Finite Range. Appl. Stoch. Models. Bus. Ind. 2017;33:733—749.
10. Lu C.-W., Reynolds M.Jr. EWMA Control Charts for Monitoring the Mean of Autocorrelated Processes. J. Qual. Technol. 2018;31(2):166—188.
11. Qiu P, Li W, Li J. A New Process Control Chart for Monitoring Short-range Serially Correlated Data. Technometrics. 2020;62:71—83.
12. Cherian A. Process Monitoring Schemes for Correlated Data. J. Research Appl. Math. 2021;7(4):28—33.
13. Silpakob K., Areepong Y., Sukparungsee S., Sunthornwat R. A New Modified EWMA Control Chart for Monitoring Processes Involving Autocorrelated Data. Intelligent Automation and Soft Computing. 2023;36(1):281—298.
14. Filaretov G.F., TSin' Yuyde. Issledovanie Vliyaniya Korrelirovannosti Nablyudeniy na Veroyatnostnye Kharakteristiki MA-algoritma Obnaruzheniya Razladki Gaussovskogo Vremennόgo Ryada po Matematicheskomu Ozhidaniyu. Vestnik MEI. 2024;3:99—106. (in Russian).
15. Repin D.S. Filaretov G.F. Metodicheskie Aspekty Issledovaniya Algoritmov Obnaruzheniya Razladki Vremennykh Ryadov. Informatsionnye Tekhnologii v Nauke, Obrazovanii i Upravlenii. 2020;1:27—32. (in Russian)
---
For citation: Filaretov G.F., Qin Yude. Analysis of the EWMA-algorithm Properties for Detecting Disorder by Mathematical Expectation оf the Gaussian Time Series of a Moving Average. Bulletin of MPEI. 2024;6:128—135. (in Russian). DOI: 10.24160/1993-6982-2024-6-128-135.

Published

2024-09-04

Issue

Section

system analisSystem Analysis, Management and Information Processing (2.3.1)