Application of Virtual Inertia Technology as a Method for Integrating Solar and Wind Power Plants in Electric Power Systems (Taking China as an Example)
DOI:
https://doi.org/10.24160/1993-6982-2025-1-42-53Keywords:
virtual inertia, virtual synchronous machine, virtual synchronous generator, GFM inverters, GFL inverters, virtual inertia systems, integration of renewable energy sourcesAbstract
Transformations in the global energy sector have led to the introduction of power electronics in power systems. With a significant share of renewable energy sources (over 15% of the total installed generation capacity) in the electric power system, a relative decrease in equivalent inertia is observed, as a result of which stability conditions and the disturbance damping quality deteriorate. One of the ways to solve these problems is the technology of providing virtual inertia. The use of this technology results in that renewable energy sources equipped with a power converter simulate an inertial response similar to that of a synchronous generator. Given that China is the leader in commissioning renewable energy facilities, such as photovoltaic and wind power plants, the use of virtual inertia systems is especially relevant for Chinese power systems. The application of virtual inertia systems in China is reviewed. Virtual inertia systems and their varieties (topology) are briefly characterized. The regulatory framework on the use of virtual inertia technology at energy facilities in China is considered, and the basic requirements for virtual inertia systems are defined. Fifteen energy projects involving the use of virtual inertia technology are analyzed; the characteristics of the projects are given; their application fields are defined, and technological effects from the use of this technology are determined. Based on the analysis results, it has been determined that virtual inertia systems are used in microgrids, energy storage systems, HVDC systems, and in the interconnected electric power system of China for integrating renewable energy sources. Virtual inertia systems in China are used for control of frequency, ensure stability of isolated power systems, perform smooth switchover of a microgrid from the isolated operation to operation in parallel with the interconnected power system, ensure active power balance during peak loads in networks with power shortages, and start-up of gas turbine stations. The virtual inertia technology development directions are shown.
References
Чжоу Сосин. Перспективы развития и ключевые технологии энергетической системы Китая в рамках цели «двойного углерода» [Электрон. ресурс] https://www.cpnn.com.cn/news/nytt/202204/t20220411_1501133.html (дата обращения 26.02.2024) (на китайском языке).
Yuan X., Zhang M. Basic Challenges of and Technical Roadmap to Power-electronized Power System Dynamics Issues // J. Proc. CSEE. 2022. V. 42(5). Pp. 1904—1916 (на китайском языке).
Бурмейстер М.В. Системы виртуальной инерции: новый подход к интеграции ВИЭ в электроэнергетические системы // Электроэнергия. Передача и распределение. 2023. № 6. С. 74—81.
Li Z., Wu X. Analysis and Reflection on Frequency Characteristics of East China Grid after Bipolar Locking of “9·19” Jinping-Sunan DC Transmission Line // J. Automation of Electric Power Systems. 2017. V. 47(7). Pp. 149—155 (на китайском языке).
Zhang J. Research on the Mechanism of Subsynchronous Oscillations of Wind Farms in Hami // J. Proc. CSEE. 2018. V. 38(18). Pp. 5447—5460 (на китайском языке).
Статистика национальной электроэнергетики в 2023 г. [Офиц. сайт] http://www.nea.gov.cn/2024-01/26/c_1310762246.htm (дата обращения 10.07.2024) (на китайском языке).
Статистика национальной электроэнергетики в 2022 г. [Офиц. сайт] https://www.nea.gov.cn/2023-01/18/c_1310691509.htm (дата обращения 10.07.2024) (на китайском языке).
Ван Сюэчэнь, Цуй Сяоли. Анализ ситуации развития и реформирования электроэнергетики Китая [Электрон. ресурс] https://mguangfu.bjx.com.cn/mnews/20220505/1222229.shtml (дата обращения 26.02.2024) (на китайском языке).
Beck H., Hesse R. Virtual Synchronous Machine // Proc. IX Intern. Conf. Electrical Power Quality and Utilisation. Barcelona, 2007. Pp. 1—6.
Sakimoto K., Miura Y., Ise T. Stabilization of a Power System with a Distributed Generator by a Virtual Synchronous Generator function // Proc. IEEE VIII Intern. Conf. Power Electronics and ECCE Asia (ICPE&ECCE). 2011. Pp. 1498—1505.
Visscher K., De Haan S.W.H. Virtual Synchronous Machines (VSG's) for Frequency Stabilisation in Future Grids with a Significant Share of Decentralized Generation // CIRED Seminar SmartGrids for Distribution. 2008. Pp. 1—4.
Zhong Q, Weiss.G. Synchronverters: Inverters that Mimic Synchronous Generators // J. IEEE Trans. Industrial Electronics. 2011. V. 4. Pp. 1259—1267.
Lü Z., Sheng W. Application and Challenge of Virtual Synchronous Machine Technology in Power System // J. Proc. CSEE. 2017. V. 37(2). Pp. 349—359 (на китайском языке).
Китайское сообщество изучения энергетики. Испытание и оценки работы технологии виртуального синхронного генератора [Электрон. ресурс] https://www.cers.org.cn/site/content/9d46304a8bcb0e1c7c222d6615e5d48f.html (дата обращения 26.03.2024) (на китайском языке).
Edris A.A., Adapa R., Baker M.H. Proposed Terms and Definitions for Flexible AC Transmission System (FACTS) // J. IEEE Power Eng. Rev. 1997. V. 12(4). Pp. 1848—1853.
QGDW 11824—2018. Технические рекомендации по виртуальным синхронным генераторам [Электрон. ресурс] https://www.doc88.com/p-63847166572012.html (дата обращения 12.02.2024) (на китайском языке).
GB/T 38983.1—2020. Виртуальная синхронная машина. Ч. 1. Общие положения [Электрон. ресурс] http://c.gb688.cn/bzgk/gb/showGb?type=online&hcno=14FE6CC146B8E600AB427463338686C2 (дата обращения 06.03.2024) (на китайском языке).
План действий по повышению стандартизации углеродного пика и углеродной нейтральности энергии [Электрон. ресурс] https://www.nea.gov.cn/2022-10/09/c_1310668927.htm (дата обращения 06.03.2024) (на китайском языке).
GB/T 40595—2021. [Электрон. ресурс] http://c.gb688.cn/bzgk/gb/showGb?type=online&hcno=03B767C66C72E791F978942578237835 (дата обращения 06.03.2024) (на китайском языке).
Arani M, Eisaadany E. Implementing Virtual Inertia in DFIG-based Wind Power Generation // J. IEEE Trans. Power Systems. 2013. V. 28(2). Pp. 1373—1384.
Zhong Q. e. a. Grid-friendly Wind Power Systems Based on the Synchronverter Technology // J. Energy Conversion Management. 2015. V. 89. Pp. 719—726.
Zha Y., Lin J. Analysis of Inertia Characteristics of Photovoltaic Power Generation System Based on Generalized Droop Control // J. Smart Power. 2021. No. 2. Pp. 54—59, 68 (на китайском языке).
Чжанцзякоу Хэбэй. План развития демонстрационной зоны возобновляемых источников энергии. [Электрон. ресурс] https://chinaenergyportal.org/zhangjiakou-hebei-renewable-energy-demonstration-zone-development-plan/ (дата обращения 06.03.2024) (на китайском языке).
ГОСТ Р 56124.2—2014. Возобновляемая энергетика. Гибридные электростанции на основе возобновляемых источников энергии, предназначенные для сельской электрификации.
Bevrani H, Ise T, Miura Y. Virtual Synchronous Generator: a Survey and New Perspectives // J. Intern. J. Electrical Power & Energy Systems. 2014. V. 54. Pp. 244—254.
Wen Y., Dai Y.A. Grid Friendly PV/BESS Distributed Generation Control Strategy // J. Proc. CSEE. 2017. V. 37(2). Pp. 464—475 (на китайском языке).
Ding M., Yang X. Control Strategies of Inverters Based on Virtual Synchronous Generator in a Microgrid // J. Automation of Electric Power Systems. 2009. No. 8. Pp. 89—93 (на китайском языке).
Lü Z., Zhong Q. Virtual Synchronous Generator and Its Applications in Micro-grid // J. Proc. CSEE. 2014. V. 34(16). Рp. 2591—2603 (на китайском языке).
Burmeyster M.V., Berdyshev I.I., Bulatov R.V., Nasyrov R.R., Bakasova A.B. Investigation of the Influence of the Virtual Inertia System on the Stability of a PV Plant // Proc. VI Intern. Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE). 2024. Pp. 1—7.
Liu G., Lin S. Summary of Virtual Synchronous Machine Technology Demonstration Project // J. Distribution & Utilization. 2019. Pp. 37—42 (на китайском языке).
Chauhan P. e. a. Battery Energy Storage for Seamless Transitions of Wind Generator in Standalone Microgrid // J. IEEE Trans. Industry Appl. 2019. V. 5(1). Pp. 69—77.
Sun C. e. a. Virtual Synchronous Machine Control for Low-inertia Power System Considering Energy Storage Limitation // Proc. IEEE Energy Conversion Congress and Exposition (ECCE). 2019. Pp. 6021—6028.
Zhu L., Yuan Z. Review of Frequency Support Control Methods for Asynchronous Interconnection System Based on VSC-HVDC // J. Electric Power Automation Equipment. 2019. V. 39(2). Pp. 84—92.
Guan M. e. a. Synchronous Generator Emulation Control Strategy for Voltage Source Converter (VSC) Stations // J. IEEE Trans. Power Systems. 2015. V. 30(6). Pp. 3093—3101.
---
Для цитирования: Чжоу Х., Насыров Р.Р., Бурмейстер М.В. Применение технологии виртуальной инерции как метода интеграции солнечных и ветроэлектрических станций в энергосистемы на примере Китая // Вестник МЭИ. 2025. № 1. С. 42—53. DOI: 10.24160/1993-6982-2025-1-42-53
---
Конфликт интересов: авторы заявляют об отсутствии конфликта интересов
#
Chzhou Sosin. Perspektivy Razvitiya i Klyuchevye Tekhnologii Energeticheskoy Sistemy Kitaya v Ramkakh Tseli «Dvoynogo Ugleroda» [Elektron. Resurs] https://www.cpnn.com.cn/news/nytt/202204/t20220411_1501133.html (Data Obrashcheniya 26.02.2024). (in Chinese).
Yuan X., Zhang M. Basic Challenges of and Technical Roadmap to Power-electronized Power System Dynamics Issues. J. Proc. CSEE. 2022;42(5):1904—1916. (in Chinese).
Burmeyster M.V. Sistemy Virtual'noy Inertsii: Novyy Podkhod k Integratsii VIE v Elektroenergeticheskie Sistemy. Elektroenergiya. Peredacha i Raspredelenie. 2023;6:74—81. (in Russian).
Li Z., Wu X. Analysis and Reflection on Frequency Characteristics of East China Grid after Bipolar Locking of “9·19” Jinping-Sunan DC Transmission Line. J. Automation of Electric Power Systems. 2017;47(7):149—155. (in Chinese).
Zhang J. Research on the Mechanism of Subsynchronous Oscillations of Wind Farms in Hami. J. Proc. CSEE. 2018;38(18):5447—5460. (in Chinese).
Statistika Natsional'noy Elektroenergetiki v 2023 g. [Ofits. Sayt] http://www.nea.gov.cn/2024-01/26/c_1310762246.htm (Data Obrashcheniya 10.07.2024). (in Chinese).
Statistika Natsional'noy Elektroenergetiki v 2022 g. [Ofits. Sayt] https://www.nea.gov.cn/2023-01/18/c_1310691509.htm (Data Obrashcheniya 10.07.2024). (in Chinese).
Van Syuechen', Tsuy Syaoli. Analiz Situatsii Razvitiya i Reformirovaniya Elektroenergetiki Kitaya [Elektron. Resurs] https://mguangfu.bjx.com.cn/mnews/20220505/1222229.shtml (Data Obrashcheniya 26.02.2024). (in Chinese).
Beck H., Hesse R. Virtual Synchronous Machine. Proc. IX Intern. Conf. Electrical Power Quality and Utilisation. Barcelona, 2007:1—6.
Sakimoto K., Miura Y., Ise T. Stabilization of a Power System with a Distributed Generator by a Virtual Synchronous Generator function. Proc. IEEE VIII Intern. Conf. Power Electronics and ECCE Asia (ICPE&ECCE). 2011:1498—1505.
Visscher K., De Haan S.W.H. Virtual Synchronous Machines (VSG's) for Frequency Stabilisation in Future Grids with a Significant Share of Decentralized Generation. CIRED Seminar SmartGrids for Distribution. 2008:1—4.
Zhong Q, Weiss.G. Synchronverters: Inverters that Mimic Synchronous Generators. J. IEEE Trans. Industrial Electronics. 2011;4:1259—1267.
Lü Z., Sheng W. Application and Challenge of Virtual Synchronous Machine Technology in Power System. J. Proc. CSEE. 2017;37(2):349—359. (in Chinese).
Kitayskое Soobshchestvo Izucheniya Energetiki. Ispytanie i Otsenki Raboty Tekhnologii Virtual'nogo Sinkhronnogo Generatora [Elektron. Resurs] https://www.cers.org.cn/site/content/9d46304a8bcb0e1c7c222d6615e5d48f.html (Data Obrashcheniya 26.03.2024). (in Chinese).
Edris A.A., Adapa R., Baker M.H. Proposed Terms and Definitions for Flexible AC Transmission System (FACTS). J. IEEE Power Eng. Rev. 1997;12(4):1848—1853.
QGDW 11824—2018. Tekhnicheskie Rekomendatsii po Virtual'nym Sinkhronnym Generatoram [Elektron. Resurs] https://www.doc88.com/p-63847166572012.html (Data Obrashcheniya 12.02.2024). (in Chinese).
GB/T 38983.1—2020. Virtual'naya Sinkhronnaya Mashina. Ch. 1. Obshchie Polozheniya [Elektron. Resurs] http://c.gb688.cn/bzgk/gb/showGb?type=online&hcno=14FE6CC146B8E600AB427463338686C2 (Data Obrashcheniya 06.03.2024). (in Chinese).
Plan Deystviy po Povysheniyu Standartizatsii Uglerodnogo Pika i Uglerodnoy Neytral'nosti Energii [Elektron. Resurs] https://www.nea.gov.cn/2022-10/09/c_1310668927.htm (Data Obrashcheniya 06.03.2024). (in Chinese).
GB/T 40595—2021. [Elektron. Resurs] http://c.gb688.cn/bzgk/gb/showGb?type=online&hcno=03B767C66C72E791F978942578237835 (Data Obrashcheniya 06.03.2024). (in Chinese).
Arani M, Eisaadany E. Implementing Virtual Inertia in DFIG-based Wind Power Generation. J. IEEE Trans. Power Systems. 2013;28(2):1373—1384.
Zhong Q. e. a. Grid-friendly Wind Power Systems Based on the Synchronverter Technology. J. Energy Conversion Management. 2015;89:719—726.
Zha Y., Lin J. Analysis of Inertia Characteristics of Photovoltaic Power Generation System Based on Generalized Droop Control. J. Smart Power. 2021;2:54—59, 68. (in Chinese).
Chzhantszyakou Khebey. Plan razvitiya Demonstratsionnoy Zony Vozobnovlyaemykh Istochnikov Energii. [Elektron. Resurs] https://chinaenergyportal.org/zhangjiakou-hebei-renewable-energy-demonstration-zone-development-plan/ (Data Obrashcheniya 06.03.2024). (in Chinese).
GOST R 56124.2—2014. Vozobnovlyaemaya Energetika. Gibridnye Elektrostantsii na Osnove Vozobnovlyaemykh Istochnikov Energii, Prednaznachennye dlya Sel'skoy Elektrifikatsii. (in Russian).
Bevrani H, Ise T, Miura Y. Virtual Synchronous Generator: a Survey and New Perspectives. J. Intern. J. Electrical Power & Energy Systems. 2014;54:244—254.
Wen Y., Dai Y.A. Grid Friendly PV/BESS Distributed Generation Control Strategy. J. Proc. CSEE. 2017;37(2):464—475. (in Chinese).
Ding M., Yang X. Control Strategies of Inverters Based on Virtual Synchronous Generator in a Microgrid. J. Automation of Electric Power Systems. 2009;8:89—93. (in Chinese).
Lü Z., Zhong Q. Virtual Synchronous Generator and Its Applications in Micro-grid. J. Proc. CSEE. 2014;34(16):2591—2603. (in Chinese).
Burmeyster M.V., Berdyshev I.I., Bulatov R.V., Nasyrov R.R., Bakasova A.B. Investigation of the Influence of the Virtual Inertia System on the Stability of a PV Plant. Proc. VI Intern. Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE). 2024:1—7.
Liu G., Lin S. Summary of Virtual Synchronous Machine Technology Demonstration Project. J. Distribution & Utilization. 2019:37—42. (in Chinese).
Chauhan P. e. a. Battery Energy Storage for Seamless Transitions of Wind Generator in Standalone Microgrid. J. IEEE Trans. Industry Appl. 2019;5(1):69—77.
Sun C. e. a. Virtual Synchronous Machine Control for Low-inertia Power System Considering Energy Storage Limitation. Proc. IEEE Energy Conversion Congress and Exposition (ECCE). 2019:6021—6028.
Zhu L., Yuan Z. Review of Frequency Support Control Methods for Asynchronous Interconnection System Based on VSC-HVDC. J. Electric Power Automation Equipment. 2019;39(2):84—92.
Guan M. e. a. Synchronous Generator Emulation Control Strategy for Voltage Source Converter (VSC) Stations. J. IEEE Trans. Power Systems. 2015;30(6):3093—3101
---
For citation: Zhou H., Nаsyrov R.R., Burmeyster M.V. Application of Virtual Inertia Technology as a Method for Integrating Solar and Wind Power Plants in Electric Power Systems (Taking China as an Example). Bulletin of MPEI. 2025;1:42—53. (in Russian). DOI: 10.24160/1993-6982-2025-1-41-52
---
Conflict of interests: the authors declare no conflict of interest