The Influence of Insolation Factor on the Development of Autonomous Energy Complexes with Trigeneration

Authors

  • Дмитрий [Dmitriy] Владимирович [V.] Сидоров [Sidorov]
  • Алексей [Aleksey] Анатольевич [A.] Дудолин [Dudolin]

DOI:

https://doi.org/10.24160/1993-6982-2025-1-76-91

Keywords:

insolation, modeling, trigeneration, power facility, energy efficiency

Abstract

The article addresses the development of trigeneration power facilities depending on the climatic and geographical conditions of the Russian Federation. An example of the operation of a trigeneration power facility implemented as part of the energy supply system of the Sberbank residential complex in the central region, Moscow is given.

By modeling the electric, heat and cold supply loads on daily and annual time scales, it became possible to determine the degree of load distribution within the facility and the degree to which the solar energy in the region influences on these loads. An analysis of the climatic and geographical conditions of the selected Russian Federation regions has shown that the influence of insolation is nonuniform in nature.

The obtained dependencies make it possible to analyze newly built-up facilities in regard of the degree to which the solar energy influences the facility’s energy balance.

In view of a growing development of autonomous residential complexes, the study of the effect the solar activity has on trigeneration facilities is a promising line of research.

Author Biographies

Дмитрий [Dmitriy] Владимирович [V.] Сидоров [Sidorov]

Ph.D.-student, Assistant of Thermal Power Plants Dept., NRU MPEI, e-mail: SidorovDmVl@mpei.ru

Алексей [Aleksey] Анатольевич [A.] Дудолин [Dudolin]

Ph.D. (Techn.), Head of Thermal Power Plants Dept., NRU MPEI, e-mail: DudolinAA@mpei.ru

References

1. Gholizadeh T., Vajdi M., Rostamzadeh, H. Exergoeconomic Optimization of a New Trigeneration System Driven by Biogas for Power, Cooling, and Freshwater Production // Energy Conversion and Management. 2020. V. 205. P. 112417.
2. Липпонен Ю. Технологии улавливания и хранения СО2 (CCS): потенциал, проблемы и вопросы регулирования. Париж: Рабочая встреча МЭА — ФСТ России, 2010.
3. Марьясин О.Ю. Разработка онтологий для цифрового двойника зданий // Онтология проектирования. Самара: ООО «Новая Техника», 2019. С. 480—495.
4. Mohammadi K., Khaledi, M.S.E., Saghafifar M., Powell K. Hybrid Systems Based on Gas Turbine Combined Cycle for Trigeneration of Power, Cooling, and Freshwater: a Comparative Techno-economic Assessment // Sustainable Energy Technologies and Assessments. 2020. V. 37. P. 100632.
5. Mohammadi K., Powell K. Thermodynamic and Economic Analysis of Different Cogeneration and Trigeneration Systems Based on Carbon Dioxide Vapor Compression Refrigeration Systems // Appl. Thermal Eng. 2019. V. 164. P. 114503.
6. ASHRAE Handbook. V. 14, 15, 16, 18: Climatic Design Information; Fenestration; Ventilation and Infiltration; Nonresidential Cooling and Heating Load Calculations. N.-Y.: AHRAE, 2009.
7. Fisher D.E., Pedersen C.O. Convective Energy and Heat Transfer Thermal Load in Building Calculations // ASHRAE Trans. 1997. V. 103(2).
8. СП 131.13330.2020. Строительная климатология.
---
Для цитирования: Сидоров Д.В., Дудолин А.А. ГВлияние фактора инсоляции на разработку автономных энергокомплексов с тригенерацией // Вестник МЭИ. 2025. № 1. С. 76—91. DOI: 10.24160/1993-6982-2025-1-76-91
---
Конфликт интересов: авторы заявляют об отсутствии конфликта интересов
#
1. Gholizadeh T., Vajdi M., Rostamzadeh, H. Exergoeconomic Optimization of a New Trigeneration System Driven by Biogas for Power, Cooling, and Freshwater Production. Energy Conversion and Management. 2020;205:112417.
2. Lipponen Yu. Tekhnologii Ulavlivaniya i Hraneniya CO2 (CCS): Potencial, Problemy i Voprosy Regulirovaniya. Parizh: Rabochaya Vstrecha MEA — FST Rossii, 2010. (in Russian).
3. Mar'yasin O.Yu. Razrabotka Ontologij dlya Cifrovogo Dvojnika Zdanij. Ontologiya Proektirovaniya. Samara: OOO «Novaya Tekhnika», 2019:480—495. (in Russian).
4. Mohammadi K., Khaledi, M.S.E., Saghafifar M., Powell K. Hybrid Systems Based on Gas Turbine Combined Cycle for Trigeneration of Power, Cooling, and Freshwater: a Comparative Techno-economic Assessment. Sustainable Energy Technologies and Assessments. 2020;37:100632.
5. Mohammadi K., Powell K. Thermodynamic and Economic Analysis of Different Cogeneration and Trigeneration Systems Based on Carbon Dioxide Vapor Compression Refrigeration Systems. Appl. Thermal Eng. 2019;164:114503.
6. ASHRAE Handbook. V. 14, 15, 16, 18: Climatic Design Information; Fenestration; Ventilation and Infiltration; Nonresidential Cooling and Heating Load Calculations. N.-Y.: AHRAE, 2009.
7. Fisher D.E., Pedersen C.O. Convective Energy and Heat Transfer Thermal Load in Building Calculations. ASHRAE Trans. 1997;103(2).
8. SP 131.13330.2020. Stroitel'naya Klimatologiya. (in Russian)
---
For citation: Sidorov D.V., Dudolin A.A. The Influence of Insolation Factor on the Development of Autonomous Energy Complexes with Trigeneration. Bulletin of MPEI. 2025;1:76—91. (in Russian). DOI: 10.24160/1993-6982-2025-1-76-91
---
Conflict of interests: the authors declare no conflict of interest

Published

2024-10-24

Issue

Section

Energy Systems and Complexes (2.4.5)