Using an Internal Combustion Engine in a Combined Power Supply System of a Residential Building with Automatic Control

Authors

  • Али [Ali] Исмаил [Ismail]
  • Эдик [Edik] Койрунович [K.] Аракелян [Arakelyan]

DOI:

https://doi.org/10.24160/1993-6982-2025-1-157-167

Keywords:

internal combustion engine, heat and power generation, natural gas, energy storage, heat exchanger, control system

Abstract

The article discusses an autonomous combined power and heat supply system constructed on the basis of an existing and inexpensive internal combustion engine with a fuel system adapted for natural gas injection. The main function of this system is to generate heat and electricity, and it is mainly designed for serving small or medium-sized residential buildings. The exhaust gas heat exchanger is used to remove heat from the engine cooling circuit and the exhaust system. The automatic control process is aimed at maintaining the required outlet coolant temperature and keeping the engine temperature within the operating range. The cooling liquid is then used to heat buildings or provide hot water for household needs. As with a standard power unit, part of the development process involves designing of control circuits, which are then integrated into the main control system. This control system is designed to operate in a fully automatic mode and can be connected to a smart house energy management system.

Author Biographies

Али [Ali] Исмаил [Ismail]

Ph.D.-student of Automated Control Systems for Thermal Processes Dept., NRU MPEI, e-mail: IsmailAl@mpei.ru

Эдик [Edik] Койрунович [K.] Аракелян [Arakelyan]

Doctor of Technical Sciences, Professor, Honored Worker of Higher Education, Professor of Automated Control Systems for Thermal Processes Dept., NRU MPEI, e-mail: Edik_arakelyan@inbox.ru

References

1. Gorria C. e. a. Forecasting Flexibility in Electricity Demand with Price/Consumption Volume Signals // Electric Power Systems Research. 2013. V. 95. Pp. 200—205.
2. Aslam M.U. e. a. An Experimental Investigation of CNG as an Alternative Fuel for a Retrofitted Gasoline Vehicle // Fuel. 2006. V. 5–6(85). Pp. 717—724.
3. Khan M.I., Yasmin T., Shakoor A. Technical Overview of Compressed Natural Gas (CNG) as a Transportation Fuel // Renewable and Sustainable Energy Rev. 2015. V. 51. Pp. 785—797.
4. Li H. e. a. Novel Ionic Liquid-type Gemini Surfactants: Synthesis, Surface Property and Antimicrobial Activity // Colloids and Surfaces. Ser. A/ Physicochemical and Engineering Aspects. 2012. V. 395. Pp. 116—124.
5. Bielaczyc P., Szczotka A., Woodburn J. A Comparison of Exhaust Emissions from Vehicles Fuelled with Petrol, LPG and CNG // IOP Conf. Series. Materials Sci. and Eng. 2016. V. 148. P. 012060.
6. Eurostat [Электрон. ресурс] https://ec.europa.eu/eurostat (дата обращения 12.09.2024).
7. Shams S., Ahmadian J., Ghorbanian M.J., Nalbandian H. Applying the CHP Method on Small-scale On-site Power Generation // Proc. IEEE Conf. Clean Energy and Technol. Langkawi, 2013. Pp. 303—306.
8. Boukhanouf R. Small Combined Heat and Power (CHP) Systems for Commercial Buildings and Institutions // Small and Micro Combimed Heat and Power (CHP) Systems. Cambridge: Woodhead Publ. Limited, 2011. Pp. 365—394.
9. Isa N.M., Tan C.W., Yatim A.H.M. A Comprehensive Review of Cogeneration System in a Microgrid: a Perspective from Architecture and Operating System // Renewable and Sustainable Energy Rev. 2018. V. 81. Pp. 2236—2263.
10. Školník P., Hubka L., Modrlák O., Náhlovský T. Cogeneration Units Simulation Models Library // Proc. Intern. Conf. Process Control. Strbske Pleso, 2013. Pp. 252—256.
11. Kılkış Ş. e. a. Advancements in Sustainable Development of Energy, Water and Environment Systems // Energy Conversion and Management. 2018. V. 176. Pp. 164—183.
12. Morris C. New Report Analyzes Global Market for Recycled Lithium and Cobalt [Электрон. ресурс] https://chargedevs.com/newswire/new-report-analyzes-global-market-for-recycled-lithium-and-cobalt/ (дата обращения 12.09.2024).
13. Battery University BU-1003 [Электрон. ресурс] https://batteryuniversity.com/article/bu-1003-electric-vehicle-ev (дата обращения 12.09.2024).
14. Štětina J., Böhm M., Březina M. Small Cogeneration Unit with Heat and Electricity Storage // Energies. 2021. V. 8(14). P. 2102.
15. Heywood J.B. Internal Combustion Engine Fundamentals // CiNii Research. 1988.
16. Wu X. e. a. Stochastic Control of Smart Home Energy Management with Plug-in Electric Vehicle Battery Energy Storage and Photovoltaic Array // J. Power Sources. 2016. V. 333. Pp. 203—212.
17. Speidel S., Bräunl T. Leaving the Grid — the Effect of Combining Home Energy Storage with Renewable Energy Generation // Renewable and Sustainable Energy Rev. 2016. V. 60. Pp. 1213—1224.
18. Ma Y., Li B. Hybridized Intelligent Home Renewable Energy Management System for Smart Grids // Sustainability. 2020. V. 5(12). P. 2117.
19. Li M. e. a. QOE-aware Smart Home Energy Management Considering Renewables and Electric Vehicles // Energies. 2018. V. 9(11). P. 2304.
20. Van Mierlo J., Messagie M., Rangaraju S. Comparative Environmental Assessment of Alternative Fueled Vehicles Using a Life Cycle Assessment // Transportation Research Proc. 2017. V. 25. Pp. 3439—3449.
21. Tabar A.R., Hamidi A.A., Ghadamian H. Experimental Investigation of CNG and Gasoline Fuels Combination on a 1.7 L Bi-fuel Turbocharged Engine // Intern. J. Energy and Environmental Eng. 2016. V. 1(8). Pp. 37—45.
22. Colmenares-Quintero R.F. e. a. Techno-environmental Assessment of a Micro-cogeneration System Based on Natural Gas for Residential Application // C.T. & F Ciencia, Tecnología, Futuro/CT&F Ciencia, Tecnología Y Tuturo. 2018. V. 1(8). Pp. 101—112.
23. Jahirul M.I. e. a. Comparative Engine Performance and Emission Analysis of CNG and Gasoline in a Retrofitted Car Engine // Appl. Thermal Eng. 2010. V. 14—15(30). Pp. 2219—2226.
24. Khan M.I. e. a. Research Progress in the Development of Natural Gas as Fuel for Road Vehicles: a Bibliographic Review (1991 — 2016) // Renewable and Sustainable Energy Rev. 2016. V. 66. Pp. 702—741.
25. Pawlenka T. e. a. Compact Automatic Controlled Internal Combustion Engine Cogeneration System Based on Natural Gas with Waste Heat Recovery from the Combustion Process // Thermal Sci. and Eng. Progress. 2023. V. 44. P. 102042.
26. Chatzopoulou M.A., Markides C.N. Thermodynamic Optimisation of a High-electrical Efficiency Integrated Internal Combustion Engine — Organic Rankine Cycle Combined Heat and Power System // Appl. Energy. 2018. V. 226. Pp. 1229—1251.
27. Hammond G.P., Titley A.A. Small-scale Combined Heat and Power Systems: the Prospects for a Distributed Micro-generator in the «Net-zero» Transition within the UK // Energies. 2022. V. 16(15). P. 6049.
28. Дубинин B.C., Лаврухин K.M. Комбинированная выработка тепловой и электрической энергии в котельных // Новости теплоснабжения. 2012. № 4(20). С. 44—47.
29. Некрасов А.С., Синяк Ю.В. Перспективы развития топливно-энергетического комплекса России на период до 2030 года // Проблемы прогнозирования. 2007. № 4. С. 21—53.
30. Аракелян Э.К., Симаков К.А. Выбор источников резервирования в мини-ТЭЦ на базе газопоршневых агрегатов по критерию надежности // Новое в российской электроэнергетике. 2019. № 7. С. 6—14.
---
Для цитирования: Исмаил Али, Аракелян Э.К. Использование двигателя внутреннего сгорания в комбинированной системе энергоснабжения жилого дома с автоматическим управлением // Вестник МЭИ. 2025. № 1. С. 157—167. DOI: 10.24160/1993-6982-2025-1-157-167
---
Конфликт интересов: авторы заявляют об отсутствии конфликта интересов
#
1. Gorria C. e. a. Forecasting Flexibility in Electricity Demand with Price/Consumption Volume Signals. Electric Power Systems Research. 2013;95:200—205.
2. Aslam M.U. e. a. An Experimental Investigation of CNG as an Alternative Fuel for a Retrofitted Gasoline Vehicle. Fuel. 2006;5–6(85):717—724.
3. Khan M.I., Yasmin T., Shakoor A. Technical Overview of Compressed Natural Gas (CNG) as a Transportation Fuel. Renewable and Sustainable Energy Rev. 2015;51:785—797.
4. Li H. e. a. Novel Ionic Liquid-type Gemini Surfactants: Synthesis, Surface Property and Antimicrobial Activity. Colloids and Surfaces. Ser. A/ Physicochemical and Engineering Aspects. 2012;395:116—124.
5. Bielaczyc P., Szczotka A., Woodburn J. A Comparison of Exhaust Emissions from Vehicles Fuelled with Petrol, LPG and CNG. IOP Conf. Series. Materials Sci. and Eng. 2016;148:012060.
6. Eurostat [Elektron Resurs] https://ec.europa.eu/eurostat (Data Obrashcheniya 12.09.2024).
7. Shams S., Ahmadian J., Ghorbanian M.J., Nalbandian H. Applying the CHP Method on Small-scale On-site Power Generation. Proc. IEEE Conf. Clean Energy and Technol. Langkawi, 2013:303—306.
8. Boukhanouf R. Small Combined Heat and Power (CHP) Systems for Commercial Buildings and Institutions. Small and Micro Combimed Heat and Power (CHP) Systems. Cambridge: Woodhead Publ. Limited, 2011:365—394.
9. Isa N.M., Tan C.W., Yatim A.H.M. A Comprehensive Review of Cogeneration System in a Microgrid: a Perspective from Architecture and Operating System. Renewable and Sustainable Energy Rev. 2018;81:2236—2263.
10. Školník P., Hubka L., Modrlák O., Náhlovský T. Cogeneration Units Simulation Models Library. Proc. Intern. Conf. Process Control. Strbske Pleso, 2013:252—256.
11. Kılkış Ş. e. a. Advancements in Sustainable Development of Energy, Water and Environment Systems. Energy Conversion and Management. 2018;176:164—183.
12. Morris C. New Report Analyzes Global Market for Recycled Lithium and Cobalt [Elektron Resurs] https://chargedevs.com/newswire/new-report-analyzes-global-market-for-recycled-lithium-and-cobalt/ (Data Obrashcheniya 12.09.2024).
13. Battery University BU-1003 [Elektron Resurs] https://batteryuniversity.com/article/bu-1003-electric-vehicle-ev (Data Obrashcheniya 12.09.2024).
14. Štětina J., Böhm M., Březina M. Small Cogeneration Unit with Heat and Electricity Storage. Energies. 2021;8(14):2102.
15. Heywood J.B. Internal Combustion Engine Fundamentals. CiNii Research. 1988.
16. Wu X. e. a. Stochastic Control of Smart Home Energy Management with Plug-in Electric Vehicle Battery Energy Storage and Photovoltaic Array. J. Power Sources. 2016;333:203—212.
17. Speidel S., Bräunl T. Leaving the Grid — the Effect of Combining Home Energy Storage with Renewable Energy Generation. Renewable and Sustainable Energy Rev. 2016;60:1213—1224.
18. Ma Y., Li B. Hybridized Intelligent Home Renewable Energy Management System for Smart Grids. Sustainability. 2020;5(12):2117.
19. Li M. e. a. QOE-aware Smart Home Energy Management Considering Renewables and Electric Vehicles. Energies. 2018;9(11):2304.
20. Van Mierlo J., Messagie M., Rangaraju S. Comparative Environmental Assessment of Alternative Fueled Vehicles Using a Life Cycle Assessment. Transportation Research Proc. 2017;25:3439—3449.
21. Tabar A.R., Hamidi A.A., Ghadamian H. Experimental Investigation of CNG and Gasoline Fuels Combination on a 1.7 L Bi-fuel Turbocharged Engine. Intern. J. Energy and Environmental Eng. 2016;1(8):37—45.
22. Colmenares-Quintero R.F. e. a. Techno-environmental Assessment of a Micro-cogeneration System Based on Natural Gas for Residential Application. C.T. & F Ciencia, Tecnología, Futuro/CT&F Ciencia, Tecnología Y Tuturo. 2018;1(8):101—112.
23. Jahirul M.I. e. a. Comparative Engine Performance and Emission Analysis of CNG and Gasoline in a Retrofitted Car Engine. Appl. Thermal Eng. 2010;14—15(30):2219—2226.
24. Khan M.I. e. a. Research Progress in the Development of Natural Gas as Fuel for Road Vehicles: a Bibliographic Review (1991 — 2016). Renewable and Sustainable Energy Rev. 2016;66:702—741.
25. Pawlenka T. e. a. Compact Automatic Controlled Internal Combustion Engine Cogeneration System Based on Natural Gas with Waste Heat Recovery from the Combustion Process. Thermal Sci. and Eng. Progress. 2023;44:102042.
26. Chatzopoulou M.A., Markides C.N. Thermodynamic Optimisation of a High-electrical Efficiency Integrated Internal Combustion Engine — Organic Rankine Cycle Combined Heat and Power System. Appl. Energy. 2018;226:1229—1251.
27. Hammond G.P., Titley A.A. Small-scale Combined Heat and Power Systems: the Prospects for a Distributed Micro-generator in the «Net-zero» Transition within the UK. Energies. 2022;16(15):6049.
28. Dubinin B.C., Lavrukhin K.M. Kombinirovannaya Vyrabotka Teplovoy i Elektricheskoy Energii v Kotel'nykh. Novosti Teplosnabzheniya. 2012;4(20):44—47. (in Russian).
29. Nekrasov A.S., Sinyak Yu.V. Perspektivy Razvitiya Toplivno-energeticheskogo Kompleksa Rossii na Period do 2030 Goda. Problemy Prognozirovaniya. 2007;4|:21—53. (in Russian).
30. Arakelyan E.K., Simakov K.A. Vybor Istochnikov Rezervirovaniya v Mini-TETS na Baze Gazoporshnevykh Agregatov po Kriteriyu Nadezhnosti. Novoe v Rossiyskoy Elektroenergetike. 2019;7:6—14. (in Russian)
---
For citation: Ismail Ali, Arakelyan E.K. Using an Internal Combustion Engine in a Combined Power Supply System of a Residential Building with Automatic Control. Bulletin of MPEI. 2025;1:157—167. (in Russian). DOI: 10.24160/1993-6982-2025-1-157-167
---
Conflict of interests: the authors declare no conflict of interest

Published

2024-06-18

Issue

Section

Automation and Control of Technological Processes and Production (2.3.3)