A Digital IGBT Driver. Control Algorithms and Emergency Modes Detection Methods
DOI:
https://doi.org/10.24160/1993-6982-2025-2-24-34Keywords:
gate driver, IGBT, protection algorithms, overcurrent protection, overvoltage protectionAbstract
Effective control of IGBT power transistors and their protection from emergency modes are crucial for securing reliable and efficient operation of modern power electronics systems used in various fields: traction applications, mining equipment, petroleum production and pumping stations, and environmentally friendly electric transport. To control a power transistor, driver boards are used, which control the transistor module gate. Such board should secure reliable switching and integrity of the transistor module. The driver board receives a signal from the upper level and converts it into a transistor gate control voltage, while in an emergency, the driver must itself turn off the transistor and produce the relevant alarm signal to the upper level. Transistor driver boards can perform IGBT protection functions using both hardware and software approaches. The article describes the control and protection algorithms that have been implemented in an intelligent IGBT driver based on an inexpensive microcontroller. The use of a microcontroller makes the gate control design more flexible and allows the protection thresholds to be accurately adjusted. The driver protects the IGBT from short circuits, current overload, overvoltage; it monitors the voltage supply and controls the transistor turn-on and turn-off processes. To fulfill these tasks, both hardware solutions with a description of the critically important driver board components and software solutions with a description of the implementation of the embedded algorithms are considered. The efficiency of the designed circuit and the developed protection algorithms was tested experimentally using a dedicated test bench. The obtained oscillograms of the study results are presented.
References
2. Dmitrievskii V., Prakht V., Kazakbaev V., Anuchin A. Comparison of Interior Permanent Magnet and Synchronous Homopolar Motors for a Mining Dump Truck Traction Drive Operated in Wide Constant Power Speed Range // Mathematics. 2022. V. 10. Pp. 1581—1591.
3. Prakht V., Dmitrievskii V., Anuchin A., Kazakbaev V. Inverter Volt-ampere Capacity Reduction by Optimization of the Traction Synchronous Homopolar Motor // Mathematics. 2021. V. 9. Pp. 2859—2868.
4. Chen H.. Zhang D.. Meng X. Analysis of Three-phase 12/8 Structure Switched Reluctance Motor Drive // Proc. IEEE Intern. Symp. Industrial Electronics. Pusan, 2001. V. 2. Pp. 781—785.
5. Xu S., Chen H., Cheng H., Yang S. Research on Parallel Switching Device Current Sharing of Switched Reluctance Motor // Proc. IEEE Conf. Russian Young Researchers in Electrical and Electronic Eng. St. Petersburg, 2017. Pp. 1070—1074.
6. Hill H.C., Legue J.B.S. Electrical Equipment for Oil-field Operations // Electrical Eng. 1931. V. 2. Pp. 753—754.
7. Асташев М.Г. и др. Эффективность полупроводниковых регуляторов мощности при дискретном управлении // Электротехника. 2024. № 6. С. 17—24.
8. Hefner A.R., Blackburn D.L., Galloway K.F. The Effect of Neutrons on the Characteristics of the Insulated Gate Bipolar Transistor (IGBT) // IEEE Trans. Nuclear Sci. 1986. V. 33. Pp. 1428—1434.
9. Hefner A.R., Blackburn D.L. Performance Trade-off for the Insulated Gate Bipolar Transistor: Buffer Layer Versus Base Lifetime Reduction // Proc. XVII Annual IEEE Power Electronics Specialists Conf. Vancouver, 1986. Pp. 27—38.
10. Nakagawa A., Nakamura S., Shinohe T. Rapid Convergence Bipolar-MOS Composite Device Model — Tonadder- and Its Application to Bipolar-mode MOSFETs (IGBT) // Proc. V Intern. Conf. Numerical Analysis of Semiconductor Devices and Integrated Circuits. Dublin, 1987. Pp. 295—300.
11. Horii K. e. a. Large Current Output Digital Gate Driver for 6500 V, 1000 A IGBT Module to Reduce Switching Loss and Collector Current Overshoot // IEEE Trans. Power Electronics. 2023. V. 13. Pp. 8075—8088.
12. Parker M., Sahin I., Mathieson R., Finney S., Judge P.D. Investigation Into Active Gate-driving Timing Resolution and Complexity Requirements for a 1200 V 400 a Silicon Carbide Half Bridge Module // IEEE Open J. Power Electronics. 2023. V. 4. Pp. 161—175.
13. Lou Z. e. a. IGBT Power Module Design for Suppressing Gate Voltage Spike at Digital Gate Control // IEEE Access. 2023. V. 11. Pp. 6632—6640.
14. Michel L. e. a. FPGA Implementation of an Optimal IGBT Gate Driver Based on Posicast Control // IEEE Trans. Power Electronics. 2013. V. 28. Pp. 2569—2575.
15. Nouman Z., Knobloch J., Klima B. FPGA Usage for Power Inverters Diagnostics // Proc. 39th Annual Conf. IEEE Industrial Electronics Soci. Vienna, 2013. Pp. 785—789.
16. Texas Instruments [Электрон. ресурс] https://qeeniu.net/lit/ds/symlink/tms320f280023.pdf?ts=1692243526687 (дата обращения 30.09.2024).
17. Tao H. e. a. A Diagnosis Method for IGBT and Current Sensor Faults of Two-level Inverter Used in Traction Systems // Proc. CAA Symp. Fault Detection, Supervision, and Safety for Technical Processes. Chengdu, 2021. Pp. 1—6.
18. Sathik M. e. a. Short Circuit Detection and Fault Current Limiting Method for IGBTs // IEEE Trans. Device and Materials Reliability. 2020. V. 20. Pp. 686—693.
19. Power Integrations [Электрон. ресурс] https://www.power.com/sites/default/files/documents/1SP0635_Manual.pdf (дата обращения 30.09.2024).
20. Zhukov A. e. a. Development of an IGBT Driver Test Bench // Proc. XIX Intern. Sci. Techn. Conf. Alternating Current Electric Drives. Ekaterinburg, 2023. Pp. 1—5.
---
Для цитирования: Савкин Д.И., Золотов А.Р., Ледовских А.А., Жуков А.Н., Григорьев С.С., Гармашова В.А. Цифровой драйвер IGBT. Алгоритмы управления и методы детектирования авариных режимов // Вестник МЭИ. 2025. № 2. С. 24—34. DOI: 10.24160/1993-6982-2025-2-24-34
---
Конфликт интересов: авторы заявляют об отсутствии конфликта интересов
#
1. Dmitrievskii V., Prakht V., Anuchin A., Kazakbaev V. Traction Synchronous Homopolar Motor: Simplified Computation Technique and Experimental Validation. IEEE Access. 2020;8:185112–185120.
2. Dmitrievskii V., Prakht V., Kazakbaev V., Anuchin A. Comparison of Interior Permanent Magnet and Synchronous Homopolar Motors for a Mining Dump Truck Traction Drive Operated in Wide Constant Power Speed Range. Mathematics. 2022;10:1581—1591.
3. Prakht V., Dmitrievskii V., Anuchin A., Kazakbaev V. Inverter Volt-ampere Capacity Reduction by Optimization of the Traction Synchronous Homopolar Motor. Mathematics. 2021;9:2859—2868.
4. Chen H.. Zhang D.. Meng X. Analysis of Three-phase 12/8 Structure Switched Reluctance Motor Drive. Proc. IEEE Intern. Symp. Industrial Electronics. Pusan, 2001;2:781—785.
5. Xu S., Chen H., Cheng H., Yang S. Research on Parallel Switching Device Current Sharing of Switched Reluctance Motor. Proc. IEEE Conf. Russian Young Researchers in Electrical and Electronic Eng. St. Petersburg, 2017:1070—1074.
6. Hill H.C., Legue J.B.S. Electrical Equipment for Oil-field Operations. Electrical Eng. 1931;2:753—754.
7. Astashev M.G. i dr. Effektivnost' Poluprovodnikovykh Regulyatorov Moshchnosti pri Diskretnom Upravlenii. Elektrotekhnika. 2024;6:17—24. (in Russian).
8. Hefner A.R., Blackburn D.L., Galloway K.F. The Effect of Neutrons on the Characteristics of the Insulated Gate Bipolar Transistor (IGBT). IEEE Trans. Nuclear Sci. 1986;33:1428—1434.
9. Hefner A.R., Blackburn D.L. Performance Trade-off for the Insulated Gate Bipolar Transistor: Buffer Layer Versus Base Lifetime Reduction. Proc. XVII Annual IEEE Power Electronics Specialists Conf. Vancouver, 1986:27—38.
10. Nakagawa A., Nakamura S., Shinohe T. Rapid Convergence Bipolar-MOS Composite Device Model — Tonadder- and Its Application to Bipolar-mode MOSFETs (IGBT). Proc. V Intern. Conf. Numerical Analysis of Semiconductor Devices and Integrated Circuits. Dublin, 1987:295—300.
11. Horii K. e. a. Large Current Output Digital Gate Driver for 6500 V, 1000 A IGBT Module to Reduce Switching Loss and Collector Current Overshoot. IEEE Trans. Power Electronics. 2023;13:8075—8088.
12. Parker M., Sahin I., Mathieson R., Finney S., Judge P.D. Investigation Into Active Gate-driving Timing Resolution and Complexity Requirements for a 1200 V 400 a Silicon Carbide Half Bridge Module. IEEE Open J. Power Electronics. 2023;4:161—175.
13. Lou Z. e. a. IGBT Power Module Design for Suppressing Gate Voltage Spike at Digital Gate Control. IEEE Access. 2023;11:6632—6640.
14. Michel L. e. a. FPGA Implementation of an Optimal IGBT Gate Driver Based on Posicast Control. IEEE Trans. Power Electronics. 2013;28:2569—2575.
15. Nouman Z., Knobloch J., Klima B. FPGA Usage for Power Inverters Diagnostics. Proc. 39th Annual Conf. IEEE Industrial Electronics Soci. Vienna, 2013:785—789.
16. Texas Instruments [Elektron. Resurs] https://qeeniu.net/lit/ds/symlink/tms320f280023.pdf?ts=1692243526687 (Data Obrashcheniya 30.09.2024).
17. Tao H. e. a. A Diagnosis Method for IGBT and Current Sensor Faults of Two-level Inverter Used in Traction Systems. Proc. CAA Symp. Fault Detection, Supervision, and Safety for Technical Processes. Chengdu, 2021:1—6.
18. Sathik M. e. a. Short Circuit Detection and Fault Current Limiting Method for IGBTs. IEEE Trans. Device and Materials Reliability. 2020;20:686—693.
19. Power Integrations [Elektron. Resurs] https://www.power.com/sites/default/files/documents/1SP0635_Manual.pdf (Data Obrashcheniya 30.09.2024).
20. Zhukov A. e. a. Development of an IGBT Driver Test Bench. Proc. XIX Intern. Sci. Techn. Conf. Alternating Current Electric Drives. Ekaterinburg, 2023:1—5
---
For citation: Savkin D.I., Zolotov A.R., Ledovskikh A.A., Zhukov A.N., Grigor’ev S.S., Garmashova V.A. A Digital IGBT Driver. Control Algorithms and Emergency Modes Detection Methods. Bulletin of MPEI. 2025;2:24—34. (in Russian). DOI: 10.24160/1993-6982-2025-2-24-34
---
Conflict of interests: the authors declare no conflict of interest

